skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integration of scanning probe microscope with high-performance computing: Fixed-policy and reward-driven workflows implementation
The rapid development of computation power and machine learning algorithms has paved the way for automating scientific discovery with a scanning probe microscope (SPM). The key elements toward operationalization of the automated SPM are the interface to enable SPM control from Python codes, availability of high computing power, and development of workflows for scientific discovery. Here, we build a Python interface library that enables controlling an SPM from either a local computer or a remote high-performance computer, which satisfies the high computation power need of machine learning algorithms in autonomous workflows. We further introduce a general platform to abstract the operations of SPM in scientific discovery into fixed-policy or reward-driven workflows. Our work provides a full infrastructure to build automated SPM workflows for both routine operations and autonomous scientific discovery with machine learning.  more » « less
Award ID(s):
2025439
PAR ID:
10578702
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
95
Issue:
9
ISSN:
0034-6748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Accessible machine learning algorithms, software, and diagnostic tools for energy-efficient devices and systems are extremely valuable across a broad range of application domains. In scientific domains, real-time near-sensor processing can drastically improve experimental design and accelerate scientific discoveries. To support domain scientists, we have developed hls4ml, an open-source software-hardware codesign workflow to interpret and translate machine learning algorithms for implementation with both FPGA and ASIC technologies. We expand on previous hls4ml work by extending capabilities and techniques towards low-power implementations and increased usability: new Python APIs, quantization-aware pruning, end-to-end FPGA workflows, long pipeline kernels for low power, and new device backends include an ASIC workflow. Taken together, these and continued efforts in hls4ml will arm a new generation of domain scientists with accessible, efficient, and powerful tools for machine-learning-accelerated discovery. 
    more » « less
  2. Abstract Analysis on HEP data is an iterative process in which the results of one step often inform the next. In an exploratory analysis, it is common to perform one computation on a collection of events, then view the results (often with histograms) to decide what to try next. Awkward Array is a Scikit-HEP Python package that enables data analysis with array-at-a-time operations to implement cuts as slices, combinatorics as composable functions, etc. However, most C++ HEP libraries, such as FastJet, have an imperative, one-particle-at-a-time interface, which would be inefficient in Python and goes against the grain of the array-at-a-time logic of scientific Python. Therefore, we developed fastjet, a pip-installable Python package that provides FastJet C++ binaries, the classic (particle-at-a-time) Python interface, and the new array-oriented interface for use with Awkward Array. The new interface streamlines interoperability with scientific Python software beyond HEP, such as machine learning. In one case, adopting this library along with other array-oriented tools accelerated HEP analysis code by a factor of 20. It was designed to be easily integrated with libraries in the Scikit-HEP ecosystem, including Uproot (file I/O), hist (histogramming), Vector (Lorentz vectors), and Coffea (high-level glue). We discuss the design of the fastjet Python library, integrating the classic interface with the array oriented interface and with the Vector library for Lorentz vector operations. The new interface was developed as open source. 
    more » « less
  3. The ATLAS experiment at CERN explores vast amounts of physics data to answer the most fundamental questions of the Universe.The prevalence of Python in scientific computing motivated ATLAS to adopt it for its data analysis workflows while enhancing users’ experience.This paper will describe to a broad audience how a large scientific collaboration leverages the power of the Scientific Python ecosystem to tackle domain-specific challenges and advance our understanding of the Cosmos.Through a simplified example of the renowned Higgs boson discovery, attendees will gain insights into the utilization of Python libraries to discriminate a signal in immersive noise, through tasks such as data cleaning, feature engineering, statistical interpretation and visualization at scale. 
    more » « less
  4. IEEE Computer Science (Ed.)
    This poster presents our first steps to define a roadmap to robust science for high-throughput applications used in scientific discovery. These applications combine multiple components into increasingly complex multi-modal workflows that are often executed in concert on heterogeneous systems. The increasing complexity hinders the ability of scientists to generate robust science (i.e., ensuring performance scalability in space and time; trust in technology, people, and infrastructures; and reproducible or confirmable research). Scientists must withstand and overcome adverse conditions such as heterogeneous and unreliable architectures at all scales (including extreme scale), rigorous testing under uncertainties, unexplainable algorithms in machine learning, and black-box methods. This poster presents findings and recommendations to build a roadmap to overcome these challenges and enable robust science. The data was collected from an international community of scientists during a virtual world cafe in February 2021 
    more » « less
  5. Abstract AQME, automated quantum mechanical environments, is a free and open‐source Python package for the rapid deployment of automated workflows using cheminformatics and quantum chemistry. AQME workflows integrate tasks performed across multiple computational chemistry packages and data formats, preserving all computational protocols, data, and metadata for machine and human users to access and reuse. AQME has a modular structure of independent modules that can be implemented in any sequence, allowing the users to use all or only the desired parts of the program. The code has been developed for researchers with basic familiarity with the Python programming language. The CSEARCH module interfaces to molecular mechanics and semi‐empirical QM (SQM) conformer generation tools (e.g., RDKit and Conformer–Rotamer Ensemble Sampling Tool, CREST) starting from various initial structure formats. The CMIN module enables geometry refinement with SQM and neural network potentials, such as ANI. The QPREP module interfaces with multiple QM programs, such as Gaussian, ORCA, and PySCF. The QCORR module processes QM results, storing structural, energetic, and property data while also enabling automated error handling (i.e., convergence errors, wrong number of imaginary frequencies, isomerization, etc.) and job resubmission. The QDESCP module provides easy access to QM ensemble‐averaged molecular descriptors and computed properties, such as NMR spectra. Overall, AQME provides automated, transparent, and reproducible workflows to produce, analyze and archive computational chemistry results. SMILES inputs can be used, and many aspects of tedious human manipulation can be avoided. Installation and execution on Windows, macOS, and Linux platforms have been tested, and the code has been developed to support access through Jupyter Notebooks, the command line, and job submission (e.g., Slurm) scripts. Examples of pre‐configured workflows are available in various formats, and hands‐on video tutorials illustrate their use. This article is categorized under:Data Science > ChemoinformaticsData Science > Computer Algorithms and ProgrammingSoftware > Quantum Chemistry 
    more » « less