skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 18, 2026

Title: Seeing Ad Transparency More Clearly: Public Perception, Use of Ad Transparency Tools, and Responses to Dataveillance
Advertising transparency efforts aim to facilitate user knowledge and control over the use of their data for personalized advertising. We seek to understand the perceptions and use of ad transparency tools among U.S. adults and whether ad transparency information surfaced by such tools affects public perceptions of online surveillance. Results show that people are aware of, although not knowledgeable about, such tools and feel slightly satisfied with them but do not use them often. Drawing from the dataveillance effects in advertising landscape (DEAL) framework, we demonstrate that whereas exposure to no, less, or more extensive transparency information did not change perceived surveillance, exposure to more extensive targeting information increased knowledge about ad transparency efforts and self-efficacy in using transparency tools. Moreover, perceived surveillance is associated with perceived benefits and risks of personalized advertising, interest in ad transparency information, desire for privacy regulation, negative affect, and intention to protect privacy and use ad transparency tools. These relationships were moderated by privacy concern and privacy cynicism. Theoretically, this study offers an empirical test of key tenets of the DEAL framework and contributes to policy debates about ad transparency.  more » « less
Award ID(s):
2151340
PAR ID:
10578743
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Routledge Taylor & Francis Group
Date Published:
Journal Name:
Journal of Advertising
ISSN:
0091-3367
Page Range / eLocation ID:
1 to 20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, Meta has shifted towards AI-mediated ad targeting mechanisms that do not require advertisers to provide detailed targeting criteria. The shift is likely driven by excitement over AI capabilities as well as the need to address new data privacy policies and targeting changes agreed upon in civil rights settlements. At the same time, in response to growing public concern about the harms of targeted advertising, Meta has touted their ad preference controls as an effective mechanism for users to exert control over the advertising they see. Furthermore, Meta markets their Why this ad targeting explanation as a transparency tool that allows users to understand the reasons for seeing particular ads and inform their actions to control what ads they see in the future. Our study evaluates the effectiveness of Meta's See less ad control, as well as the actionability of ad targeting explanations following the shift to AI-mediated targeting. We conduct a large-scale study, randomly assigning participants the intervention of marking See less to either Body Weight Control or Parenting topics, and collecting the ads Meta shows to participants and their targeting explanations before and after the intervention. We find that utilizing the See less ad control for the topics we study does not significantly reduce the number of ads shown by Meta on these topics, and that the control is less effective for some users whose demographics are correlated with the topic. Furthermore, we find that the majority of ad targeting explanations for local ads made no reference to location-specific targeting criteria, and did not inform users why ads related to the topics they requested to See less of continued to be delivered. We hypothesize that the poor effectiveness of controls and lack of actionability and comprehensiveness in explanations are the result of the shift to AI-mediated targeting, for which explainability and transparency tools have not yet been developed by Meta. Our work thus provides evidence for the need of new methods for transparency and user control, suitable and reflective of how the increasingly complex and AI-mediated ad delivery systems operate. 
    more » « less
  2. COVID-19 exposure-notification apps have struggled to gain adoption. Existing literature posits as potential causes of this low adoption: privacy concerns, insufficient data transparency, and the type of appeal – collective- vs. individual-good – used to frame the app. As policy guidance suggests using tailored advertising to evaluate the effects of these factors, we present the first field study of COVID-19 contact tracing apps with a randomized, control trial of 14 different advertisements for CovidDefense, Louisiana’s COVID-19 exposure-notification app. We find that all three hypothesized factors – privacy, data transparency, and appeals framing – relate to app adoption, even when controlling for age, gender, and community density. Our results offer (1) the first field evidence supporting the use of collective-good appeals, (2) nuanced findings regarding the efficacy of data and privacy transparency, the effects of which are moderated by appeal framing and potential users’ demographics, and (3) field-evidence-based guidance for future efforts to encourage pro-social health technology adoption. 
    more » « less
  3. Mobile apps nowadays are often packaged with third-party ad libraries to monetize user data. Many mobile ad networks exploit these mobile apps to extract sensitive real-time geographical data about the users for location-based targeted advertising. However, the massive collection of sensitive information by the ad networks has raised serious privacy concerns. Unfortunately, the extent and granularity of private data collection of the location-based ad networks remain obscure. In this work, we present a mobile tracking measurement study to characterize the severity and significance of location-based private data collection in mobile ad networks, by using an automated fine-grained data collection instrument running across different geographical areas. We perform extensive threat assessments for different ad networks using 1,100 popular apps running across 10 different cities. This study discovers that the number of location-based ads tend to be positively correlated with the population density of locations, ad networks' data collection behaviors differ across different locations, and most ad networks are capable of collecting precise location data. Detailed analysis further reveals the significant impact of geolocation on the tracking behavior of targeted ads, and a noteworthy security concern for advertising organizations to aggregate different types of private user data across multiple apps for a better targeted ad experience. 
    more » « less
  4. This paper introduces Ibex, an advertising system that reduces the amount of data that is collected on users while still allowing advertisers to bid on real-time ad auctions and measure the effectiveness of their ad campaigns. Specifically, Ibex addresses an issue in recent proposals such as Google’s Privacy Sandbox Topics API in which browsers send information about topics that are of interest to a user to advertisers and demand-side platforms (DSPs). DSPs use this information to (1) determine how much to bid on the auction for a user who is interested in particular topics, and (2) measure how well their ad campaign does for a given audience (i.e., measure conversions). While Topics and related proposals reduce the amount of user information that is exposed, they still reveal user preferences. In Ibex, browsers send user information in an encrypted form that still allows DSPs and advertisers to measure conversions, compute aggregate statistics such as histograms about users and their interests, and obliviously bid on auctions without learning for whom they are bidding. Our implementation of Ibex shows that creating histograms is 1.7–2.5× more expensive for browsers than disclosing user information, and Ibex’s oblivious bidding protocol can finish auctions within 550 ms. We think this makes Ibex capable of preserving a good experience while improving user privacy. 
    more » « less
  5. In this research proposal, we outline our plans to examine the characteristics and affordances of ad transparency systems provided by 22 online platforms. We outline a user study designed to evaluate the usability of eight of these systems by studying the actions and behaviors each system enables, as well as users' understanding of these transparency systems. 
    more » « less