skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 28, 2026

Title: CATO: End-to-End Optimization of ML-Based Traffic Analysis Pipelines
Machine learning has shown tremendous potential for improving the capabilities of network traffic analysis applications, often outperforming simpler rule-based heuristics. However, ML-based solutions remain difficult to deploy in practice. Many existing approaches only optimize the predictive performance of their models, overlooking the practical challenges of running them against network traffic in real time. This is especially problematic in the domain of traffic analysis, where the efficiency of the serving pipeline is a critical factor in determining the usability of a model. In this work, we introduce CATO, a framework that addresses this problem by jointly optimizing the predictive performance and the associated systems costs of the serving pipeline. CATO leverages recent advances in multi-objective Bayesian optimization to efficiently identify Pareto-optimal configurations, and automatically compiles end-to-end optimized serving pipelines that can be deployed in real networks. Our evaluations show that compared to popular feature optimization techniques, CATO can provide up to 3600× lower inference latency and 3.7× higher zero-loss throughput while simultaneously achieving better model performance.  more » « less
Award ID(s):
2124424 2319080
PAR ID:
10578813
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
USENIX Symposium on Networked Systems Design and Implementation (NSDI)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Providing end-to-end network delay guarantees in packet-switched networks such as the Internet is highly desirable for mission-critical and delay-sensitive data transmission, yet it remains a challenging open problem. Since deterministic bounds are based on the worst-case traffic behavior, various frameworks for stochastic network calculus have been proposed to provide less conservative, probabilistic bounds on network delay, at least in theory. However, little attention has been devoted to the problem of regulating traffic according to stochastic burstiness bounds, which is necessary in order to guarantee the delay bounds in practice. We design and analyze a stochastic traffic regulator that can be used in conjunction with results from stochastic network calculus to provide probabilistic guarantees on end-to-end network delay. Two alternative implementations of the stochastic regulator are developed and compared. Numerical results are provided to demonstrate the performance of the proposed stochastic traffic regulator. 
    more » « less
  2. Providing end-to-end network delay guarantees in packet-switched networks such as the Internet is highly desirable for mission-critical and delay-sensitive data transmission, yet it remains a challenging open problem. Due to the looseness of the deterministic bounds, various frameworks for stochastic network calculus have been proposed to provide tighter, probabilistic bounds on network delay, at least in theory. However, little attention has been devoted to the problem of regulating traffic according to stochastic burstiness bounds, which is necessary in order to guarantee the delay bounds in practice. We propose and analyze a stochastic traffic regulator that can be used in conjunction with results from stochastic network calculus to provide probabilistic guarantees on end-to-end network delay. Numerical results are provided to demonstrate the performance of the proposed traffic regulator. 
    more » « less
  3. With the advent of 5G, supporting high-quality game streaming applications on edge devices has become a reality. This is evidenced by a recent surge in cloud gaming applications on mobile devices. In contrast to video streaming applications, interactive games require much more compute power for supporting improved rendering (such as 4K streaming) with the stipulated frames-per second (FPS) constraints. This in turn consumes more battery power in a power-constrained mobile device. Thus, the state-of-the-art gaming applications suffer from lower video quality (QoS) and/or energy efficiency. While there has been a plethora of recent works on optimizing game streaming applications, to our knowledge, there is no study that systematically investigates the design pairs on the end-to-end game streaming pipeline across the cloud, network, and edge devices to understand the individual contributions of the different stages of the pipeline for improving the overall QoS and energy efficiency. In this context, this paper presents a comprehensive performance and power analysis of the entire game streaming pipeline consisting of the server/cloud side, network, and edge. Through extensive measurements with a high-end workstation mimicking the cloud end, an open-source platform (Moonlight-GameStreaming) emulating the edge device/mobile platform, and two network settings (WiFi and 5G) we conduct a detailed measurement-based study with seven representative games with different characteristics. We characterize the performance in terms of frame latency, QoS, bitrate, and energy consumption for different stages of the gaming pipeline. Our study shows that the rendering stage and the encoding stage at the cloud end are the bottlenecks to support 4K streaming. While 5G is certainly more suitable for supporting enhanced video quality with 4K streaming, it is more expensive in terms of power consumption compared to WiFi. Further, fluctuations in 5G network quality can lead to huge frame drops thus affecting QoS, which needs to be addressed by a coordinated design between the edge device and the server. Finally, the network interface and the decoder units in a mobile platform need more energy-efficient design to support high quality games at a lower cost. These observations should help in designing more cost-effective future cloud gaming platforms. 
    more » « less
  4. Driving safety is a top priority for autonomous vehicles. Orthogonal to prior work handling accident-prone traffic events by algorithm designs at the policy level, we investigate a Closed-loop Adversarial Training (CAT) framework for safe end-to-end driving in this paper through the lens of environment augmentation. CAT aims to continuously improve the safety of driving agents by training the agent on safety-critical scenarios that are dynamically generated over time. A novel resampling technique is developed to turn log-replay real-world driving scenarios into safety-critical ones via probabilistic factorization, where the adversarial traffic generation is modeled as the multiplication of standard motion prediction sub-problems. Consequently, CAT can launch more efficient physical attacks compared to existing safety-critical scenario generation methods and yields a significantly less computational cost in the iterative learning pipeline. We incorporate CAT into the MetaDrive simulator and validate our approach on hundreds of driving scenarios imported from real-world driving datasets. Experimental results demonstrate that CAT can effectively generate adversarial scenarios countering the agent being trained. After training, the agent can achieve superior driving safety in both log-replay and safety-critical traffic scenarios on the held- out test set. Code and data are available at https://metadriverse.github.io/cat. 
    more » « less
  5. Traditional traffic signal control focuses more on the optimization aspects whereas the stability and robustness of the closed-loop system are less studied. This paper aims to establish the stability properties of traffic signal control systems through the analysis of a practical model predictive control (MPC) scheme, which models the traffic network with the conservation of vehicles based on a store-and-forward model and attempts to balance the traffic densities. More precisely, this scheme guarantees the exponential stability of the closed-loop system under state and input constraints when the inflow is feasible and traffic demand can be fully accessed. Practical exponential stability is achieved in case of small uncertain traffic demand by a modification of the previous scheme. Simulation results of a small-scale traffic network validate the theoretical analysis. 
    more » « less