skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An emerging fungal disease is spreading across the globe and affecting the blueberry industry
Summary Powdery mildew is an economically important disease caused byc. 1000 different fungal species.Erysiphe vacciniiis an emerging powdery mildew species that is impacting the blueberry industry. Once confined to North America,E. vacciniiis now spreading rapidly across major blueberry‐growing regions, including China, Morocco, Mexico, and the USA, threatening millions in losses.This study documents its recent global spread by analyzing both herbarium specimens, some over 150‐yr‐old, and fresh samples collected world‐wide.Our findings were integrated into a ‘living phylogeny’ via T‐BAS to simplify pathogen identification and enable rapid responses to new outbreaks. We identified 50 haplotypes, two primary introductions world‐wide, and revealed a shift from a generalist to a specialist pathogen.This research provides insights into the complexities of host specialization and highlights the need to address this emerging global threat to blueberry production.  more » « less
Award ID(s):
2200038 2402193 2031955
PAR ID:
10578835
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; « less
Publisher / Repository:
New Phytologist Foundation
Date Published:
Journal Name:
New Phytologist
Volume:
246
Issue:
1
ISSN:
0028-646X
Page Range / eLocation ID:
103 to 112
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Increased temperatures associated with urbanization (the “urban heat island” effect) have been shown to impact a wide range of traits across diverse taxa. At the same time, climatic conditions vary at fine spatial scales within habitats due to factors including shade from shrubs, trees, and built structures. Patches of shade may function as microclimate refugia that allow species to occur in habitats where high temperatures and/or exposure to ultraviolet radiation would otherwise be prohibitive. However, the importance of shaded microhabitats for interactions between species across urbanized landscapes remains poorly understood. Weedy plants and their foliar pathogens are a tractable system for studying how multiple scales of climatic variation influence infection prevalence. Powdery mildew pathogens are particularly well suited to this work, as these fungi can be visibly diagnosed on leaf surfaces. We studied the effects of shaded microclimates on rates of powdery mildew infection onPlantagohost species in (1) “pandemic pivot” surveys in which undergraduate students recorded shade and infection status of thousands of plants along road verges in urban and suburban residential neighborhoods, (2) monthly surveys of plant populations in 22 parks along an urbanization gradient, and (3) a manipulative field experiment directly testing the effects of shade on the growth and transmission of powdery mildew. Together, our field survey results show strong positive effects of shade on mildew infection in wildPlantagopopulations across urban, suburban, and rural habitats. Our experiment suggests that this relationship is causal, where microclimate conditions associated with shade promote pathogen growth. Overall, infection prevalence increased with urbanization despite a negative association between urbanization and tree cover at the landscape scale. These findings highlight the importance of taking microclimate heterogeneity into account when establishing links between macroclimate or land use context and prevalence of disease. 
    more » « less
  2. Abstract Spray‐induced gene silencing (SIGS) is an emerging tool for crop pest protection. It utilizes exogenously applied double‐stranded RNA to specifically reduce pest target gene expression using endogenous RNA interference machinery. In this study, SIGS methods were developed and optimized for powdery mildew fungi, which are widespread obligate biotrophic fungi that infect agricultural crops, using the known azole‐fungicide targetcytochrome P45051 (CYP51) in theGolovinomyces orontii–Arabidopsis thalianapathosystem. Additional screening resulted in the identification of conserved gene targets and processes important to powdery mildew proliferation:apoptosis‐antagonizing transcription factorin essential cellular metabolism and stress response; lipid catabolism geneslipase a,lipase 1, andacetyl‐CoA oxidasein energy production;and genes involved in manipulation of the plant host via abscisic acid metabolism (9‐cis‐epoxycarotenoid dioxygenase,xanthoxin dehydrogenase, and a putativeabscisic acid G‐protein coupled receptor) and secretion of the effector protein,effector candidate 2. Powdery mildew is the dominant disease impacting grapes and extensive powdery mildew resistance to applied fungicides has been reported. We therefore developed SIGS for theErysiphe necator–Vitis viniferasystem and tested six successful targets identified using theG. orontii–A. thalianasystem. For all targets tested, a similar reduction in powdery mildew disease was observed between systems. This indicates screening of broadly conserved targets in theG. orontii–A. thalianapathosystem identifies targets and processes for the successful control of other powdery mildew fungi. The efficacy of SIGS on powdery mildew fungi makes SIGS an exciting prospect for commercial powdery mildew control. 
    more » « less
  3. Summary Arbuscular mycorrhizal fungi (AMF) are critical to native plant community ecology and influence plant invasions. Research has focused on nutritional benefits of AMF, although evidence shows that they may also confer pathogen resistance. However, most such work has focused on agriculturally relevant plant species. Therefore, whether AMF confer pathogen resistance tonative(wild) plant species, and impact of novel plant–microbial relationships on this benefit, remains understudied.We conducted a series of experiments measuring mycorrhizal‐induced resistance (MIR) to pathogens in native prairie plant species. We tested for pathogenicity across 69 field‐isolated fungi and oomycetes across five plant species. We then conducted experiments assessing growth response to native and non‐native AMF and pathogens in three plant species from native populations and milkweed (Asclepias syriaca) from native and postagricultural populations.We found evidence of MIR in milkweed. Moreover, we identified differential effects of AMF depending on plant species, with milkweed from native populations showing benefits from AMF. Finally, growth response was mediated by local adaptation, with matching AMF–pathogen origin strengthening responses.This work illustrates the importance of locally sourced AMF and plants to native plant ecology and suggests that pathogen resistance may be an important dimension of AMF benefit. 
    more » « less
  4. Abstract In Arabidopsis thaliana, the POWDERY MILDEW RESISTANT4 (PMR4)/GLUCAN SYNTHASE LIKE5 (GSL5) callose synthase is required for pathogen-induced callose deposition in cell wall defense. Paradoxically, pmr4/gsl5 mutants exhibit strong resistance to both powdery and downy mildew. The powdery mildew resistance of pmr4/gsl5 has been attributed to upregulated salicylic acid (SA) signaling based on its dependance on PHYTOALEXIN DEFICIENT4 (PAD4), which controls SA accumulation, and its abolishment by bacterial NahG salicylate hydroxylase. Our study revealed that disruption of PMR4/GSL5 also leads to early senescence. Suppressor analysis uncovered that PAD4 and N-hydroxypipecolic acid (NHP) biosynthetic genes ABERRANT GROWTH AND DEATH2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) and FLAVIN-DEPENDENT MONOXYGENASE1 (FMO1) are required for early senescence of pmr4/gsl5 mutants. The critical role of NHP in the early senescence of pmr4/gsl5 was supported by greatly increased accumulation of pipecolic acid in pmr4/gsl5 mutants. In contrast, disruption of the SA biosynthetic gene ISOCHORISMATE SYNTHASE1/SA-INDUCTION DIFFICIENT 2 (ICS1/SID2), which greatly reduces SA accumulation, had little effect on impaired growth of pmr4/gsl5. Furthermore, while disruption of PAD4 completely abolished the powdery mildew resistance in pmr4/gsl5, mutations in ICS1/SID2, ALD1, or FMO1 had only a minor effect on the resistance of the mutant plants. However, disruption of both ICS1/SID2 and FMO1 abolished the enhanced immunity of the callose synthase mutants against the fungal pathogen. Therefore, while NHP plays a crucial role in the early senescence of pmr4/gsl5 mutants, both SA and NHP have important roles in the strong powdery mildew resistance induced by the loss of the callose synthase. 
    more » « less
  5. Summary Leaf economic spectrum (LES) relationships have been studied across many different plant lineages and at different organizational scales. However, the temporal stability of the LES relationships is largely unknown. We used the wild blueberry system with high genotypic diversity to test whether trait–trait relationships across genotypes demonstrate the same LES relationships found in the global database (GLOPNET) and whether they are stable across years.We studied leaf structure, photosynthesis, and leaf nutrients for 16 genotypes of two wild blueberry species semi‐naturally grown in a common farm in Maine, USA, across 4 yr.We found substantial variation in leaf structure, physiology, and nutrient traits within and among genotypes, as well as across years in wild blueberries. The LES trait–trait relationships (covariance structure) across genotypes were not always found in all years. The trait syndrome of wild blueberries was shifted by changing environmental conditions over the years. Additionally, traits in 1 yr cannot be used to predict those of another year.Our findings show that LES generally holds among genotypes but is temporally unstable, stressing the significant influence of trait plasticity in response to fluctuating environmental conditions across years, and the importance of temporal dimensions in shaping functional traits and species coexistence. 
    more » « less