Abstract Invasive species can impact native populations through competition, predation, habitat alteration, and disease transmission, but also genetically through hybridization. Potential outcomes of hybridization span the continuum from extinction to hybrid speciation and can be further complicated by anthropogenic habitat disturbance. Hybridization between the native green anole lizard (Anolis carolinensis) and a morphologically similar invader (A. porcatus) in south Florida provides an ideal opportunity to study interspecific admixture across a heterogeneous landscape. We used reduced‐representation sequencing to describe introgression in this hybrid system and to test for a relationship between urbanization and non‐native ancestry. Our findings indicate that hybridization between green anole lineages was probably a limited, historic event, producing a hybrid population characterized by a diverse continuum of ancestry proportions. Genomic cline analyses revealed rapid introgression and disproportionate representation of non‐native alleles at many loci and no evidence for reproductive isolation between parental species. Three loci were associated with urban habitat characteristics; urbanization and non‐native ancestry were positively correlated, although this relationship did not remain significant when accounting for spatial nonindependence. Ultimately, our study demonstrates the persistence of non‐native genetic material even in the absence of ongoing immigration, indicating that selection favouring non‐native alleles can override the demographic limitation of low propagule pressure. We also note that not all outcomes of admixture between native and non‐native species should be considered intrinsically negative. Hybridization with ecologically robust invaders can lead to adaptive introgression, which may facilitate the long‐term survival of native populations otherwise unable to adapt to anthropogenically mediated global change. 
                        more » 
                        « less   
                    This content will become publicly available on January 24, 2026
                            
                            A pangenome analysis reveals the center of origin and evolutionary history of Phytophthora infestans and 1c clade species
                        
                    
    
            We examined the evolutionary history ofPhytophthora infestansand its close relatives in the 1c clade. We used whole genome sequence data from 69 isolates ofPhytophthoraspecies in the 1c clade and conducted a range of genomic analyses including nucleotide diversity evaluation, maximum likelihood trees, network assessment, time to most recent common ancestor and migration analysis. We consistently identified distinct and later divergence of the two MexicanPhytophthoraspecies,P.mirabilisandP.ipomoeae, fromP.infestansand other 1c clade species.Phytophthora infestansexhibited more recent divergence from other 1c clade species ofPhytophthorafrom South America,P.andinaandP.betacei. Speciation in the 1c clade and evolution ofP.infestansoccurred in the Andes.P.andina–P.betacei–P.infestansformed a species complex with indistinct species boundaries, hybridizations between the species, and short times to common ancestry. Furthermore, the distinction between modern Mexican and South AmericanP.infestansproved less discrete, suggesting gene flow between populations over time. Admixture analysis indicated a complex relationship among these populations, hinting at potential gene flow across these regions. HistoricP.infestans, collected from 1845–1889, were the first to diverge from all otherP.infestanspopulations. Modern South American populations diverged next followed by Mexican populations which showed later ancestry. Both populations were derived from historicP.infestans. Based on the time of divergence ofP.infestansfrom its closest relatives,P.andinaandP.betaceiin the Andean region, we consider the Andes to be the center of origin ofP.infestans, with modern globalization contributing to admixture betweenP.infestanspopulations today from Mexico, the Andes and Europe. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2200038
- PAR ID:
- 10578836
- Editor(s):
- Blair, Jaime E
- Publisher / Repository:
- Public Library of Science (PLOS)
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 20
- Issue:
- 1
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0314509
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT The application of high‐throughput sequencing to phylogenetic analyses is allowing authors to reconstruct the true evolutionary history of species. This work can illuminate specific mechanisms underlying divergence when combined with analyses of gene flow, recombination and selection. We conducted a phylogenomic analysis ofCatharus, a songbird genus with considerable potential for gene flow, variation in migratory behaviour and genomic resources. We documented discordance among trees constructed for mitochondrial, autosomal and sex (Z) chromosome partitions. Two trees were recovered on the Z. Both trees differed from the autosomes, one matched the mitochondria, and the other was unique to the Z. Gene flow with one species likely generated much of this discordance; substantial admixture betweenustulatusand the remaining species was documented and linked to at least two historic events. The tree unique to the Z likely reflects the true history ofCatharus; local genomic analyses recovered the same tree in autosomal regions with reduced admixture and recombination. Genes previously connected to migration were enriched in these regions suggesting transitions between migratory and non‐migratory states helped generate divergence. Migratory (vs. nonmigratory)Catharusformed a monophyletic clade in a subset of genomic regions. Gene flow was elevated in some of these regions suggesting adaptive introgression may have occurred, but the dominant pattern was of balancing selection maintaining ancestral polymorphisms important for olfaction and perhaps, by extension, adaptation to temperate climates. This work illuminates the evolutionary history of an important model in speciation and demonstrates how differential resistance to gene flow can affect local genomic patterns.more » « less
- 
            CRISPR-Cas editing systems have proved to be powerful tools for functional genomics research, but their effectiveness in many non-model species remains limited. In the potato and tomato pathogen Phytophthora infestans, an editing system was previously developed that expresses the Lachnospiracae bacterium Cas12a endonuclease (LbCas12a) and guide RNA from a DNA vector. However, the method works at low efficiency. Based on a hypothesis that editing is constrained by a mismatch between the optimal temperatures for P. infestans growth and endonuclease catalysis, we tested two strategies that increased the frequency of editing of two target genes by about ten-fold. First, we found that editing was boosted by a mutation in LbCas12a (D156R), which had been reported to expand its catalytic activity over a broader temperature range. Second, we observed that editing was enhanced by transiently incubating transformed tissue at a higher temperature. These modifications should make CRISPR-Cas12a more useful for interrogating gene and protein function in P. infestans and its relatives, especially species that grow optimally at lower temperatures.more » « less
- 
            Phytophthora infestans is a major oomycete plant pathogen, responsible for potato late blight, which led to the Irish Potato Famine from 1845–1852. Since then, potatoes resistant to this disease have been bred and deployed worldwide. Their resistance (R) genes recognize pathogen effectors responsible for virulence and then induce a plant response stopping disease progression. However, most deployed R genes are quickly overcome by the pathogen. We use targeted sequencing of effector and R genes on herbarium specimens to examine the joint evolution in both P. infestans and potato from 1845–1954. Currently relevant effectors are historically present in P. infestans, but with alternative alleles compared tomodern reference genomes. The historic FAM-1 lineage has the virulent Avr1 allele and the ability to break the R1 resistance gene before breeders deployed it in potato. The FAM-1 lineage is diploid, but later, triploid US-1 lineages appear. We show that pathogen virulence genes and host resistance genes have undergone significant changes since the Famine, from both natural and artificial selection.more » « less
- 
            Semino, Ornella (Ed.)The South American continent is remarkably diverse in its ecological zones, spanning the Amazon rainforest, the high-altitude Andes, and Tierra del Fuego. Yet the original human populations of the continent successfully inhabited all these zones, well before the buffering effects of modern technology. Therefore, it is likely that the various cultures were successful, in part, due to positive natural selection that allowed them to successfully establish populations for thousands of years. Detecting positive selection in these populations is still in its infancy, as the ongoing effects of European contact have decimated many of these populations and introduced gene flow from outside of the continent. In this review, we explore hypotheses of possible human biological adaptation, methods to identify positive selection, the utilization of ancient DNA, and the integration of modern genomes through the identification of genomic tracts that reflect the ancestry of the first populations of the Americas.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
