skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evolution of Phytophthora infestans on its potato host since the Irish potato famine
Phytophthora infestans is a major oomycete plant pathogen, responsible for potato late blight, which led to the Irish Potato Famine from 1845–1852. Since then, potatoes resistant to this disease have been bred and deployed worldwide. Their resistance (R) genes recognize pathogen effectors responsible for virulence and then induce a plant response stopping disease progression. However, most deployed R genes are quickly overcome by the pathogen. We use targeted sequencing of effector and R genes on herbarium specimens to examine the joint evolution in both P. infestans and potato from 1845–1954. Currently relevant effectors are historically present in P. infestans, but with alternative alleles compared tomodern reference genomes. The historic FAM-1 lineage has the virulent Avr1 allele and the ability to break the R1 resistance gene before breeders deployed it in potato. The FAM-1 lineage is diploid, but later, triploid US-1 lineages appear. We show that pathogen virulence genes and host resistance genes have undergone significant changes since the Famine, from both natural and artificial selection.  more » « less
Award ID(s):
2200038
PAR ID:
10578869
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Advances
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    Abstract In 1843, a hitherto unknown plant pathogen entered the US and spread to potato fields in the northeast. By 1845, the pathogen had reached Ireland leading to devastating famine. Questions arose immediately about the source of the outbreaks and how the disease should be managed. The pathogen, now known asPhytophthora infestans, still continues to threaten food security globally. A wealth of untapped knowledge exists in both archival and modern documents, but is not readily available because the details are hidden in descriptive text. In this work, we (1) used text analytics of unstructured historical reports (1843–1845) to map US late blight outbreaks; (2) characterized theories on the source of the pathogen and remedies for control; and (3) created modern late blight intensity maps using Twitter feeds. The disease spread from 5 to 17 states and provinces in the US and Canada between 1843 and 1845. Crop losses, Andean sources of the pathogen, possible causes and potential treatments were discussed. Modern disease discussion on Twitter included near-global coverage and local disease observations. Topic modeling revealed general disease information, published research, and outbreak locations. The tools described will help researchers explore and map unstructured text to track and visualize pandemics. 
    more » « less
  2. Late blight (LB) of potato is considered one of the most devastating plant diseases in the world. Most cultivated potatoes are susceptible to this disease. However, wild relatives of potatoes are an excellent source of LB resistance. We screened 384 accessions of 72 different wild potato species available from the U.S. Potato GeneBank against the LB pathogen Phytophthora infestans in a detached leaf assay (DLA). P. infestans isolates US-23 and NL13316 were used in the DLA to screen the accessions. Although all plants in 273 accessions were susceptible, all screened plants in 39 accessions were resistant. Resistant and susceptible plants were found in 33 accessions. All tested plants showed a partial resistance phenotype in two accessions, segregation of resistant and partial resistant plants in nine accessions, segregation of partially resistant and susceptible plants in four accessions, and segregation of resistant, partially resistant, and susceptible individuals in 24 accessions. We found several species that were never before reported to be resistant to LB: Solanum albornozii, S. agrimoniifolium, S. chomatophilum, S. ehrenbergii, S. hypacrarthrum, S. iopetalum, S. palustre, S. piurae, S. morelliforme, S. neocardenasii, S. trifidum, and S. stipuloideum. These new species could provide novel sources of LB resistance. P. infestans clonal lineage-specific screening of selected species was conducted to identify the presence of RB resistance. We found LB resistant accessions in Solanum verrucosum, Solanum stoloniferum, and S. morelliforme that were susceptible to the RB overcoming isolate NL13316, indicating the presence of RB-like resistance in these species. 
    more » « less
  3. Summary Recent discoveries show that fungi can take up environmental RNA, which can then silence fungal genes through environmental RNA interference. This discovery prompted the development of Spray‐Induced Gene Silencing (SIGS) for plant disease management. In this study, we aimed to determine the efficacy of SIGS across a variety of eukaryotic microbes. We first examined the efficiency of RNA uptake in multiple pathogenic and non‐pathogenic fungi, and an oomycete pathogen. We observed efficient double‐stranded RNA (dsRNA) uptake in the fungal plant pathogensBotrytis cinerea,Sclerotinia sclerotiorum,Rhizoctonia solani,Aspergillus nigerandVerticillium dahliae, but no uptake inColletotrichum gloeosporioides, and weak uptake in a beneficial fungus,Trichoderma virens. For the oomycete plant pathogen,Phytophthora infestans, RNA uptake was limited and varied across different cell types and developmental stages. Topical application of dsRNA targeting virulence‐related genes in pathogens with high RNA uptake efficiency significantly inhibited plant disease symptoms, whereas the application of dsRNA in pathogens with low RNA uptake efficiency did not suppress infection. Our results have revealed that dsRNA uptake efficiencies vary across eukaryotic microbe species and cell types. The success of SIGS for plant disease management can largely be determined by the pathogen’s RNA uptake efficiency. 
    more » « less
  4. Abstract One of the common mechanisms to trigger plant innate immunity is recognition of pathogen avirulence gene products directly by products of major resistance (R) genes in a gene for gene manner. In the USA, theRgenes,Pik-s, PiKh/m, andPi-ta, Pi-39(t), andPtrgenes have been effectively deployed to prevent the infections ofM. oryzaeraces, IB49, and IC17 for some time.Pi-9is only recently being deployed to provide overlapped and complimentary resistance toMagnaporthe oryzaeraces IB49, IC17 and IE1k in the USA. Pi-ta, Pi-39(t), Pi9 are major nuclear binding site-leucine rich (NLR) proteins, and Ptr is an atypical R protein with 4 armadillo repeats. AlphaFold is an artificial intelligence system that predicts a protein 3D structure from its amino acid sequence. Here we report genome sequence analyses of the effectors and avirulence (AVR) genes,AVR-PitaandAVR-Pik, andAVR-Pi9, in 3 differentialM. oryzaeraces. Using AlphaFold 2 and 3 we find strong evidence of direct interactions of products of resistance genesPi-taandPikwithM. oryzaeavirulence (AVR) genes,AVR-PitaandAVR-Pikrespectively. We also found that AVR-Pita interacts with Pi-39(t) and Ptr, and Pi9 interacts with both AVR-Pi9 and AVR-Pik. Validation of direct interactions of two pairs of R and AVR proteins supported a direct interaction mechanism of plant innate immunity. Detecting interaction of both Ptr and Pi39(t) with AVR-Pita, and Pi-9 with both AVR-Pi9 and AVR-Pik, revealed a new insight into recognition of pathogen signaling molecules by these host R genes in triggering plant innate immunity. 
    more » « less
  5. Abstract Botrytis cinerea is a fungal pathogen that causes necrotic disease on more than a thousand known hosts widely spread across the plant kingdom. How B. cinerea interacts with such extensive host diversity remains largely unknown. To address this question, we generated an infectivity matrix of 98 strains of B. cinerea on 90 genotypes representing eight host plants. This experimental infectivity matrix revealed that the disease outcome is largely explained by variations in either the host resistance or pathogen virulence. However, the specific interactions between host and pathogen account for 16% of the disease outcome. Furthermore, the disease outcomes cluster among genotypes of a species but are independent of the relatedness between hosts. When analyzing the host specificity and virulence of B. cinerea, generalist strains are predominant. In this fungal necrotroph, specialization may happen by a loss in virulence on most hosts rather than an increase of virulence on a specific host. To uncover the genetic architecture of Botrytis host specificity and virulence, a genome-wide association study (GWAS) was performed and revealed up to 1492 genes of interest. The genetic architecture of these traits is widespread across the B. cinerea genome. The complexity of the disease outcome might be explained by hundreds of functionally diverse genes putatively involved in adjusting the infection to diverse hosts. 
    more » « less