skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating Cavity Quantum Electrodynamics-Enabled Endo/Exo- Selectivities in a Diels-Alder Reaction
Coupling molecules to a quantized radiation field inside an optical cavity has shown great promise in modifying chemical reactivity. It was recently proposed that strong light-matter interactions are able to differentiate endo/exo products of a Diels-Alder reaction at the transition state. Using the recently developed parameterized quantum electrodynamic \textit{ab initio} polariton chemistry approach along with time-dependent density functional theory, we theoretically confirm that the ground state selectivity of a Diels-Alder reaction can be fundamentally changed by strongly coupling to the cavity, generating preferential endo or exo isomers which are formed with equal probability for the same reaction outside the cavity. This provides an important and necessary benchmark with the high-level self-consistent QED coupled cluster approach. In addition, by computing the ground state difference density, we show that the cavity induces a redistribution of electron density from intramolecular $$\pi$$-bonding orbitals to intermolecular bonding orbitals, thus providing chemically relavent description of the cavity-induced changes to the ground state chemistry and thus changes to the molecular orbital theory inside the cavity. We extend this exploration to an arbitrary cavity polarization vector which leads to critical polarization angles that maximize the endo=/exo selectivity of the reaction. Finally, we decompose the energy contributions from the Hamiltonian and provide discussion relating to the dominent dipole self-energy effects on the ground state.  more » « less
Award ID(s):
2124398
PAR ID:
10578951
Author(s) / Creator(s):
; ;
Publisher / Repository:
ChemRxiv
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The intrinsic reversibility of dynamic covalent bonding, such as the furan‐maleimide Diels‐Alder (DA) cycloaddition reactions, enables reprocessable, self‐healing polymer materials that can be reconfigured via the mechanism of solid‐state plasticity. In this work, the temperature‐dependent exchange rates of stereochemically distinctendoandexoDA bonds are leveraged to achieve tunable, temperature‐ and stress‐activated shape morphing in Diels‐Alder polymer (DAP) networks. Through thermal annealing, ≈35% ofendoDA isomers are converted in neat DAP networks to the thermodynamically favoredexoform, achieving ≈97%exoafter complete annealing at 60 °C. This conversion results in a ≈1.7 fold increase in elastic modulus, from 1.7 to 3.0 MPa, and significantly alters the stress relaxation and shape recovery behavior. Spatially resolved annealing, is further showcased enabling the precise control of spatial distributions ofendoandexoDA bonds across planar geometries. The locally distinct concentrations ofendo/exoisomers, achieved by temperature‐induced conversion ofendoDA isomers to the thermodynamically stableexoDA isomers, gave rise to the spatial distributions of stress relaxation rates and elastic strain recovery mismatch to enable controlled stereochemical shape morphing. This approach provides a simplified, thermally driven method for shape morphing, with potential applications in soft robotics and flexible electronics. 
    more » « less
  2. null (Ed.)
    Precise time trajectories and detailed reaction pathways of the Diels-Alder reaction were directly observed using accurate single-molecule detection on an in situ label-free single-molecule electrical detection platform. This study demonstrates the well-accepted concerted mechanism and clarifies the role of charge transfer complexes with endo or exo configurations on the reaction path. An unprecedented stepwise pathway was verified at high temperatures in a high-voltage electric field. Experiments and theoretical results revealed an electric field–catalyzed mechanism that shows the presence of a zwitterionic intermediate with one bond formation and variation of concerted and stepwise reactions by the strength of the electric field, thus establishing a previously unidentified approach for mechanistic control by electric field catalysis. 
    more » « less
  3. Recent theoretical studies have explored how ultra-strong light–matter coupling can be used as a handle to control chemical transformations. Ab initio cavity quantum electrodynamics calculations demonstrate that large changes to reaction energies or barrier heights can be realized by coupling electronic degrees of freedom to vacuum fluctuations associated with an optical cavity mode, provided that large enough coupling strengths can be achieved. In many cases, the cavity effects display a pronounced orientational dependence. Here, we highlight the critical role that geometry relaxation can play in such studies. As an example, we consider a recent work [Pavošević et al., Nat. Commun. 14, 2766 (2023)] that explored the influence of an optical cavity on Diels–Alder cycloaddition reactions and reported large changes to reaction enthalpies and barrier heights, as well as the observation that changes in orientation can inhibit the reaction or select for one reaction product or another. Those calculations used fixed molecular geometries optimized in the absence of the cavity and fixed relative orientations of the molecules and the cavity mode polarization axis. Here, we show that when given a chance to relax in the presence of the cavity, the molecular species reorient in a way that eliminates the orientational dependence. Moreover, in this case, we find that qualitatively different conclusions regarding the impact of the cavity on the thermodynamics of the reaction can be drawn from calculations that consider relaxed vs unrelaxed molecular structures. 
    more » « less
  4. Abstract Recent experiments suggest that ground state chemical reactivity can be modified when placing molecular systems inside infrared cavities where molecular vibrations are strongly coupled to electromagnetic radiation. This phenomenon lacks a firm theoretical explanation. Here, we employ an exact quantum dynamics approach to investigate a model of cavity-modified chemical reactions in the condensed phase. The model contains the coupling of the reaction coordinate to a generic solvent, cavity coupling to either the reaction coordinate or a non-reactive mode, and the coupling of the cavity to lossy modes. Thus, many of the most important features needed for realistic modeling of the cavity modification of chemical reactions are included. We find that when a molecule is coupled to an optical cavity it is essential to treat the problem quantum mechanically to obtain a quantitative account of alterations to reactivity. We find sizable and sharp changes in the rate constant that are associated with quantum mechanical state splittings and resonances. The features that emerge from our simulations are closer to those observed in experiments than are previous calculations, even for realistically small values of coupling and cavity loss. This work highlights the importance of a fully quantum treatment of vibrational polariton chemistry. 
    more » « less
  5. Abstract Recent experiments demonstrate the control of chemical reactivities by coupling molecules inside an optical microcavity. In contrast, transition state theory predicts no change of the reaction barrier height during this process. Here, we present a theoretical explanation of the cavity modification of the ground state reactivity in the vibrational strong coupling (VSC) regime in polariton chemistry. Our theoretical results suggest that the VSC kinetics modification is originated from the non-Markovian dynamics of the cavity radiation mode that couples to the molecule, leading to the dynamical caging effect of the reaction coordinate and the suppression of reaction rate constant for a specific range of photon frequency close to the barrier frequency. We use a simple analytical non-Markovian rate theory to describe a single molecular system coupled to a cavity mode. We demonstrate the accuracy of the rate theory by performing direct numerical calculations of the transmission coefficients with the same model of the molecule-cavity hybrid system. Our simulations and analytical theory provide a plausible explanation of the photon frequency dependent modification of the chemical reactivities in the VSC polariton chemistry. 
    more » « less