skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rheology of the lower mantle: a review
Abstract We review our current understanding of the rheological properties of the lower mantle based both on materials science and geophysics points of view. We assume a simple model of the lower mantle that is made of only two minerals: bridgmanite (Br) (Mg,Fe)SiO3and ferropericlase (Fp) (Mg,Fe)O, and address a question of (i) which mineral is weaker (lower viscosity), (ii) how does lower mantle viscosity change with depth and location, and (iii) discuss implications for shear localization. We first review plausible mechanisms of deformation based on the deformation mechanism map on the normalized stress and temperature space. We conclude that likely mechanism of deformation in the lower mantle is either diffusion creep or power-law dislocation creep. Based on this review, we discuss recently proposed models by Cordier and his group (Cordier in Nature 481:177–181, 2012; Cordier in Nature 613:303–306 , 2023) where either asthermal creep (i.e., low-temperature plasticity) or pure climb creep (not power-law dislocation creep) would play an important role. We conclude that these models are not acceptable because (1) many aspects of their models are incompatible with experimental observations and theoretical models of deformation of most materials including oxides and metals and (2) these models are not consistent with the distribution of seismic anisotropy. Hence, we focus on power-law dislocation creep and diffusion creep. We review previously published results on deformation (by dislocation creep) and diffusion, we conclude that Fp is weaker than Br. The radial (depth) depth and lateral variation of viscosity is discussed based on the estimated activation volume and estimated variation of grain-size. Geophysical studies suggest only modest depth variation of viscosity that demands relatively small activation volume (V* (< 3$$\times$$ × 10–6m3/mol)). Plausible models to explain small activation volume are discussed including the role of extrinsic diffusion. Grain-size also controls viscosity if deformation is by diffusion creep. Okamoto and Hiraga (J Geophys Res, 2024. 10.1029/2023JB027803), Solomatov et al. (Phys Earth Planet Inter 129:265–282, 2002) estimated the grain-size evolution in the lower mantle based on the kinetics of grain-growth and the role of a phase transformation. In contrast, there are other papers (e.g., Paul et al. in Prog Earth Planet Sci 11:64, 2024; Rozel in Geochem Geophys Geosyst, 2012. 10.1029/2012GC004282) where grain-size distribution is estimated assuming that grain-size is controlled by dynamic recrystallization. The validity of assumption is questionable because dynamic recrystallization occurs due to deformation by dislocation creep but not by diffusion creep and the absence of seismic anisotropy indicates that diffusion creep dominates in most of the lower mantle. Finally, we review the published models of shear localization that would explain the long-term preservation of geochemical reservoirs in the lower mantle. Accepting that two minerals (Fp and Br) in the lower mantle have largely different viscosity, Ballmer et al. (Nat Geosci 10:236–240, 2017) proposed that the presence of regions of compositional difference (difference in Fp/Br ratio) leads to localized deformation (deformation mainly in the weaker regions). However, in addition to the ad hoc nature of this model, there is no strong evidence for the presence of large variation in Fp/Br in the lower mantle that makes the validity of this model questionable. There are some papers where processes of shear localization are explored without invoking the presence of regions of large rheological contrast. Thielmann et al. (Geochem Geophys Geosyst, 2020. 10.1029/2019GC008688) presented the results of theoretical study of deformation of initially homogeneous two-phase mixture (Fp and Br) and showed that deformation causes the elongation of a weak Fp that promotes shear localization. In this model, the rheological contrast between Fp and Br was assumed to be independent of strain. However, Cho and Karato (J Geophys Res 2022. 10.1029/2021JB022673 ; Phys Earth Planet Inter, 2024. 10.1016/j.pepi.2024 ) showed that when deformation is by diffusion creep, the rheological contrast increases with strain due to the evolution of stress concentration caused by grain elongation. They showed that this will promote strain weakening particularly in simple shear that would lead to shear localization. Consequently, the tendency for shear localization is stronger in their model than a model where rheological contrast is assumed to be independent of strain.  more » « less
Award ID(s):
2322719
PAR ID:
10579022
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Progress in Earth and Planetary Science
Volume:
12
Issue:
1
ISSN:
2197-4284
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The strength of lithospheric plates is a central component of plate tectonics, governed by brittle processes in the shallow portion of the plate and ductile behavior in the deeper portion. We review experimental constraints on ductile deformation of olivine, the main mineral in the upper mantle and thus the lithosphere. Olivine deforms by four major mechanisms: low-temperature plasticity, dislocation creep, dislocation-accommodated grain-boundary sliding (GBS), and diffusion-accommodated grain-boundary sliding (diffusion creep). Deformation in most of the lithosphere is dominated by GBS, except in shear zones—in which diffusion creep dominates—and in the brittle-ductile transition—in which low-temperature plasticity may dominate. We find that observations from naturally deformed rocks are consistent with extrapolation of the experimentally constrained olivine flow laws to geological conditions but that geophysical observations predict a weaker lithosphere. The causes of this discrepancy are unresolved but likely reside in the uncertainty surrounding processes in the brittle-ductile transition, at which the lithosphere is strongest. ▪ Ductile deformation of the lithospheric mantle is constrained by experimental data for olivine. ▪ Olivine deforms by four major mechanisms: low-temperature plasticity, dislocation creep, dislocation-accommodated grain-boundary sliding, and diffusion creep. ▪ Observations of naturally deformed rocks are consistent with extrapolation of olivine flow laws from experimental conditions. ▪ Experiments predict stronger lithosphere than geophysical observations, likely due to gaps in constraints on deformation in the brittle-ductile transition. 
    more » « less
  2. Abstract Following the reanalysis of individual experimental runs of some widely cited studies (Jain et al., 2018,https://doi.org/10.1002/2017JB014847), we revisit the global data analysis of Korenaga and Karato (2008,https://doi.org/10.1029/2007JB005100) with a significantly improved version of their Markov chain Monte Carlo inversion. Their algorithm, previously corrected by Mullet et al. () to minimize potential parameter bias, is further modified here to estimate more efficiently interrun biases in global data sets. Using the refined Markov chain Monte Carlo inversion technique, we simultaneously analyze experimental data on the deformation of olivine aggregates compiled from different studies. Realistic composite rheological models, including both diffusion and dislocation creep, are adopted, and the role of dislocation‐accommodated grain boundary sliding is also investigated. Furthermore, the influence of interrun biases on inversion results is studied using experimental and synthetic data. Our analysis shows that existing data can tightly constrain the grain‐size exponent for diffusion creep at ∼2, which is different from the value commonly assumed (p= 3). Different data sets and model assumptions, however, yield nonoverlapping estimates on other flow‐law parameters, and the flow‐law parameters for grain boundary sliding are poorly resolved in most cases. We thus provide a few plausible candidate flow‐law models for olivine rheology to facilitate future geodynamic modeling. The availability of more data that explore a wider range of experimental conditions, especially higher pressures, is essential to improve our understanding of upper mantle rheology. 
    more » « less
  3. IcpCarb is a Matlab package that processes raw counts data from the iCAP (or other ICP instruments) and converts them to element ratios based on the determined standard curves and matrix curves.  License: Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) References: Please cite the following references when using the IcpCarb package: Guo, W. (2024) IcpCarb: A Matlab package for processing element data from ICP analysis, Zenodo. http://doi.org/10.5281/zenodo.13929590 Lu, W., Guo, W., Oppo, D. W. (2024) Assessing the precision and accuracy of foraminifera elemental analysis at low ratios, Geochem. Geophys. Geosyst., 25, e2024GC011560. https:// doi.org/10.1029/2024GC011560 Funding: Development of this package was supported by the U.S. National Science Foundation [NSF-OCE-1811305] and the Investment in Science Fund at Woods Hole Oceanographic Institution. 
    more » « less
  4. Abstract Transport of heat from the interior of the Earth drives convection in the mantle, which involves the deformation of solid rocks over billions of years. The lower mantle of the Earth is mostly composed of iron-bearing bridgmanite MgSiO 3 and approximately 25% volume periclase MgO (also with some iron). It is commonly accepted that ferropericlase is weaker than bridgmanite 1 . Considerable progress has been made in recent years to study assemblages representative of the lower mantle under the relevant pressure and temperature conditions 2,3 . However, the natural strain rates are 8 to 10 orders of magnitude lower than in the laboratory, and are still inaccessible to us. Once the deformation mechanisms of rocks and their constituent minerals have been identified, it is possible to overcome this limitation thanks to multiscale numerical modelling, and to determine rheological properties for inaccessible strain rates. In this work we use 2.5-dimensional dislocation dynamics to model the low-stress creep of MgO periclase at lower mantle pressures and temperatures. We show that periclase deforms very slowly under these conditions, in particular, much more slowly than bridgmanite deforming by pure climb creep. This is due to slow diffusion of oxygen in periclase under pressure. In the assemblage, this secondary phase hardly participates in the deformation, so that the rheology of the lower mantle is very well described by that of bridgmanite. Our results show that drastic changes in deformation mechanisms can occur as a function of the strain rate. 
    more » « less
  5. Abstract The rheology of the crust and mantle and the interaction of viscoelastic flow with seismic/aseismic slip on faults control the state of stress in the lithosphere over multiple seismic cycles. The rheological behavior of rocks is well constrained in a laboratory setting, but thein situproperties of the lithosphere and its lateral variations remain poorly known. Here, we access the lower‐crustal rheology in Southern California by exploiting 8 years of geodetic postseismic deformation following the 2010 El Mayor‐Cucapah earthquake. The data illuminate viscoelastic flow in the lower crust with lateral variations of effective viscosity correlated with the geological province. We show that a Burgers assembly with dashpots following a nonlinear constitutive law can approximate the temporal evolution of stress and strain rate, indicating the activation of nonlinear transient creep before steady‐state dislocation creep. The transient and background viscosities in the lower crust of the Salton Trough are on the order of ~1018and ~1019 Pa s, respectively, about an order of magnitude lower than those in the surrounding regions. We highlight the importance of transient creep, nonlinear flow laws, and lateral variations of rheological properties to capture the entire history of postseismic relaxation following the El Mayor‐Cucapah earthquake. 
    more » « less