Background:Mild cognitive impairment (MCI) can be an early sign of Alzheimer’s disease and other types of dementia detectable through gait analysis. Curve walking, which demands greater cognitive and motor skills, may be more sensitive in MCI detection than straight walking. However, few studies have compared gait performance in older adults with and without MCI in these conditions. Objective:To compare the capability of curve and straight walking tests for the detection of MCI among older adults. Methods:We employed a Kinect v.2 camera to record the gait of 55 older adults (30 healthy controls, 25 with MCI) during single-task straight and curve walking tests. We examined 50 gait markers and conducted statistical analyses to compare groups and conditions. The trail was approved with protocol No. IR.SEMUMS.REC.1398.237 by the ethics committee of Semnan University of Medical Sciences in Iran. Results:Older adults with MCI exhibited more compromised gait performance, particularly during curve walking. Curve walking outperformed straight walking in MCI detection, with several gait markers showing significant differences between healthy controls and MCI patients. These markers encompass average velocity, cadence, temporal markers (e.g., gait cycle subphase durations), spatial markers (e.g., foot position changes during gait subphases), and spatiotemporal markers (e.g., step and stride velocities). Conclusions:Our study suggests curve walking as a more informative and challenging test for MCI detection among older adults, facilitating early diagnosis using non-invasive, cost-effective tools like the Kinect v.2 camera, complementing cognitive assessments in early diagnosis, and tracking MCI progression to dementia.
more »
« less
Detection of mild cognitive impairment using various types of gait tests and machine learning
IntroductionAlzheimer's disease and related disorders (ADRD) progressively impair cognitive function, prompting the need for early detection to mitigate its impact. Mild Cognitive Impairment (MCI) may signal an early cognitive decline due to ADRD. Thus, developing an accessible, non-invasive method for detecting MCI is vital for initiating early interventions to prevent severe cognitive deterioration. MethodsThis study explores the utility of analyzing gait patterns, a fundamental aspect of human motor behavior, on straight and oval paths for diagnosing MCI. Using a Kinect v.2 camera, we recorded the movements of 25 body joints from 25 individuals with MCI and 30 healthy older adults (HC). Signal processing, descriptive statistical analysis, and machine learning techniques were employed to analyze the skeletal gait data in both walking conditions. Results and discussionThe study demonstrated that both straight and oval walking patterns provide valuable insights for MCI detection, with a notable increase in identifiable gait features in the more complex oval walking test. The Random Forest model excelled among various algorithms, achieving an 85.50% accuracy and an 83.9% F-score in detecting MCI during oval walking tests. This research introduces a cost-effective, Kinect-based method that integrates gait analysis—a key behavioral pattern—with machine learning, offering a practical tool for MCI screening in both clinical and home environments.
more »
« less
- Award ID(s):
- 1942669
- PAR ID:
- 10579104
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Neurology
- Volume:
- 15
- ISSN:
- 1664-2295
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract INTRODUCTIONIdentification of individuals with mild cognitive impairment (MCI) who are at risk of developing Alzheimer's disease (AD) is crucial for early intervention and selection of clinical trials. METHODSWe applied natural language processing techniques along with machine learning methods to develop a method for automated prediction of progression to AD within 6 years using speech. The study design was evaluated on the neuropsychological test interviews ofn = 166 participants from the Framingham Heart Study, comprising 90 progressive MCI and 76 stable MCI cases. RESULTSOur best models, which used features generated from speech data, as well as age, sex, and education level, achieved an accuracy of 78.5% and a sensitivity of 81.1% to predict MCI‐to‐AD progression within 6 years. DISCUSSIONThe proposed method offers a fully automated procedure, providing an opportunity to develop an inexpensive, broadly accessible, and easy‐to‐administer screening tool for MCI‐to‐AD progression prediction, facilitating development of remote assessment. HighlightsVoice recordings from neuropsychological exams coupled with basic demographics can lead to strong predictive models of progression to dementia from mild cognitive impairment.The study leveraged AI methods for speech recognition and processed the resulting text using language models.The developed AI‐powered pipeline can lead to fully automated assessment that could enable remote and cost‐effective screening and prognosis for Alzehimer's disease.more » « less
-
Abstract INTRODUCTIONAlzheimer's disease (AD) initiates years prior to symptoms, underscoring the importance of early detection. While amyloid accumulation starts early, individuals with substantial amyloid burden may remain cognitively normal, implying that amyloid alone is not sufficient for early risk assessment. METHODSGiven the genetic susceptibility of AD, a multi‐factorial pseudotime approach was proposed to integrate amyloid imaging and genotype data for estimating a risk score. Validation involved association with cognitive decline and survival analysis across risk‐stratified groups, focusing on patients with mild cognitive impairment (MCI). RESULTSOur risk score outperformed amyloid composite standardized uptake value ratio in correlation with cognitive scores. MCI subjects with lower pseudotime risk score showed substantial delayed onset of AD and slower cognitive decline. Moreover, pseudotime risk score demonstrated strong capability in risk stratification within traditionally defined subgroups such as early MCI, apolipoprotein E (APOE) ε4+ MCI,APOEε4– MCI, and amyloid+ MCI. DISCUSSIONOur risk score holds great potential to improve the precision of early risk assessment. HighlightsAccurate early risk assessment is critical for the success of clinical trials.A new risk score was built from integrating amyloid imaging and genetic data.Our risk score demonstrated improved capability in early risk stratification.more » « less
-
Abstract BACKGROUNDEarly discrimination and prediction of cognitive decline are crucial for the study of neurodegenerative mechanisms and interventions to promote cognitive resiliency. METHODSOur research is based on resting‐state electroencephalography (EEG) and the current dataset includes 137 consensus‐diagnosed, community‐dwelling Black Americans (ages 60–90 years, 84 healthy controls [HC]; 53 mild cognitive impairment [MCI]) recruited through Wayne State University and Michigan Alzheimer's Disease Research Center. We conducted multiscale analysis on time‐varying brain functional connectivity and developed an innovative soft discrimination model in which each decision on HC or MCI also comes with a connectivity‐based score. RESULTSThe leave‐one‐out cross‐validation accuracy is 91.97% and 3‐fold accuracy is 91.17%. The 9 to 18 months’ progression trend prediction accuracy over an availability‐limited subset sample is 84.61%. CONCLUSIONThe EEG‐based soft discrimination model demonstrates high sensitivity and reliability for MCI detection and shows promising capability in proactive prediction of people at risk of MCI before clinical symptoms may occur.more » « less
-
Introduction:Estimating the effects of comorbidities on risk of all-cause dementia (ACD) could potentially better inform prevention strategies and identify novel risk factors compared to more common post-hoc analyses from predictive modeling. Methods:In a retrospective cohort study of patients with mild cognitive impairment (MCI) from US Veterans Affairs Medical Centers between 2009 and 2021, we used machine learning techniques from the treatment effect estimation literature to estimate individualized effects of 25 comorbidities (e.g., hypertension) on ACD risk within 10 years of MCI diagnosis. Age and healthcare utilization were adjusted for using exact matching. Results:After matching, of 19,797 MCI patients, 6,767 (34.18%) experienced ACD onset. Dyslipidemia (percentage point increase of ACD risk range across different treatment effect estimation techniques = 0.009–0.044), hypertension (range = 0.007–0.043), and diabetes (range = 0.007–0.191) consistently had non-zero average effects. Discussion:Our findings support known associations between dyslipidemia, hypertension, and diabetes that increase the risk of ACD in MCI patients, demonstrating the potential for these approaches to identify novel risk factors.more » « less
An official website of the United States government

