IntroductionAlzheimer's disease and related disorders (ADRD) progressively impair cognitive function, prompting the need for early detection to mitigate its impact. Mild Cognitive Impairment (MCI) may signal an early cognitive decline due to ADRD. Thus, developing an accessible, non-invasive method for detecting MCI is vital for initiating early interventions to prevent severe cognitive deterioration. MethodsThis study explores the utility of analyzing gait patterns, a fundamental aspect of human motor behavior, on straight and oval paths for diagnosing MCI. Using a Kinect v.2 camera, we recorded the movements of 25 body joints from 25 individuals with MCI and 30 healthy older adults (HC). Signal processing, descriptive statistical analysis, and machine learning techniques were employed to analyze the skeletal gait data in both walking conditions. Results and discussionThe study demonstrated that both straight and oval walking patterns provide valuable insights for MCI detection, with a notable increase in identifiable gait features in the more complex oval walking test. The Random Forest model excelled among various algorithms, achieving an 85.50% accuracy and an 83.9% F-score in detecting MCI during oval walking tests. This research introduces a cost-effective, Kinect-based method that integrates gait analysis—a key behavioral pattern—with machine learning, offering a practical tool for MCI screening in both clinical and home environments.
more »
« less
Novel methodology for detection and prediction of mild cognitive impairment using resting‐state EEG
Abstract BACKGROUNDEarly discrimination and prediction of cognitive decline are crucial for the study of neurodegenerative mechanisms and interventions to promote cognitive resiliency. METHODSOur research is based on resting‐state electroencephalography (EEG) and the current dataset includes 137 consensus‐diagnosed, community‐dwelling Black Americans (ages 60–90 years, 84 healthy controls [HC]; 53 mild cognitive impairment [MCI]) recruited through Wayne State University and Michigan Alzheimer's Disease Research Center. We conducted multiscale analysis on time‐varying brain functional connectivity and developed an innovative soft discrimination model in which each decision on HC or MCI also comes with a connectivity‐based score. RESULTSThe leave‐one‐out cross‐validation accuracy is 91.97% and 3‐fold accuracy is 91.17%. The 9 to 18 months’ progression trend prediction accuracy over an availability‐limited subset sample is 84.61%. CONCLUSIONThe EEG‐based soft discrimination model demonstrates high sensitivity and reliability for MCI detection and shows promising capability in proactive prediction of people at risk of MCI before clinical symptoms may occur.
more »
« less
- Award ID(s):
- 2032709
- PAR ID:
- 10442078
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Alzheimer's & Dementia
- Volume:
- 20
- Issue:
- 1
- ISSN:
- 1552-5260
- Format(s):
- Medium: X Size: p. 145-158
- Size(s):
- p. 145-158
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract INTRODUCTIONIdentification of individuals with mild cognitive impairment (MCI) who are at risk of developing Alzheimer's disease (AD) is crucial for early intervention and selection of clinical trials. METHODSWe applied natural language processing techniques along with machine learning methods to develop a method for automated prediction of progression to AD within 6 years using speech. The study design was evaluated on the neuropsychological test interviews ofn = 166 participants from the Framingham Heart Study, comprising 90 progressive MCI and 76 stable MCI cases. RESULTSOur best models, which used features generated from speech data, as well as age, sex, and education level, achieved an accuracy of 78.5% and a sensitivity of 81.1% to predict MCI‐to‐AD progression within 6 years. DISCUSSIONThe proposed method offers a fully automated procedure, providing an opportunity to develop an inexpensive, broadly accessible, and easy‐to‐administer screening tool for MCI‐to‐AD progression prediction, facilitating development of remote assessment. HighlightsVoice recordings from neuropsychological exams coupled with basic demographics can lead to strong predictive models of progression to dementia from mild cognitive impairment.The study leveraged AI methods for speech recognition and processed the resulting text using language models.The developed AI‐powered pipeline can lead to fully automated assessment that could enable remote and cost‐effective screening and prognosis for Alzehimer's disease.more » « less
-
Abstract INTRODUCTIONIdentifying mild cognitive impairment (MCI) patients at risk for dementia could facilitate early interventions. Using electronic health records (EHRs), we developed a model to predict MCI to all‐cause dementia (ACD) conversion at 5 years. METHODSCox proportional hazards model was used to identify predictors of ACD conversion from EHR data in veterans with MCI. Model performance (area under the receiver operating characteristic curve [AUC] and Brier score) was evaluated on a held‐out data subset. RESULTSOf 59,782 MCI patients, 15,420 (25.8%) converted to ACD. The model had good discriminative performance (AUC 0.73 [95% confidence interval (CI) 0.72–0.74]), and calibration (Brier score 0.18 [95% CI 0.17–0.18]). Age, stroke, cerebrovascular disease, myocardial infarction, hypertension, and diabetes were risk factors, while body mass index, alcohol abuse, and sleep apnea were protective factors. DISCUSSIONEHR‐based prediction model had good performance in identifying 5‐year MCI to ACD conversion and has potential to assist triaging of at‐risk patients. HighlightsOf 59,782 veterans with mild cognitive impairment (MCI), 15,420 (25.8%) converted to all‐cause dementia within 5 years.Electronic health record prediction models demonstrated good performance (area under the receiver operating characteristic curve 0.73; Brier 0.18).Age and vascular‐related morbidities were predictors of dementia conversion.Synthetic data was comparable to real data in modeling MCI to dementia conversion. Key PointsAn electronic health record–based model using demographic and co‐morbidity data had good performance in identifying veterans who convert from mild cognitive impairment (MCI) to all‐cause dementia (ACD) within 5 years.Increased age, stroke, cerebrovascular disease, myocardial infarction, hypertension, and diabetes were risk factors for 5‐year conversion from MCI to ACD.High body mass index, alcohol abuse, and sleep apnea were protective factors for 5‐year conversion from MCI to ACD.Models using synthetic data, analogs of real patient data that retain the distribution, density, and covariance between variables of real patient data but are not attributable to any specific patient, performed just as well as models using real patient data. This could have significant implications in facilitating widely distributed computing of health‐care data with minimized patient privacy concern that could accelerate scientific discoveries.more » « less
-
Abstract BackgroundAlzheimer’s Disease (AD) is a widespread neurodegenerative disease with Mild Cognitive Impairment (MCI) acting as an interim phase between normal cognitive state and AD. The irreversible nature of AD and the difficulty in early prediction present significant challenges for patients, caregivers, and the healthcare sector. Deep learning (DL) methods such as Recurrent Neural Networks (RNN) have been utilized to analyze Electronic Health Records (EHR) to model disease progression and predict diagnosis. However, these models do not address some inherent irregularities in EHR data such as irregular time intervals between clinical visits. Furthermore, most DL models are not interpretable. To address these issues, we developed a novel DL architecture called Time‐Aware RNN (TA‐RNN) to predict MCI to AD conversion at the next clinical visit. MethodTA‐RNN comprises of a time embedding layer, attention‐based RNN, and prediction layer based on multi‐layer perceptron (MLP) (Figure 1). For interpretability, a dual‐level attention mechanism within the RNN identifies significant visits and features impacting predictions. TA‐RNN addresses irregular time intervals by incorporating time embedding into longitudinal cognitive and neuroimaging data based on attention weights to create a patient embedding. The MLP, trained on demographic data and the patient embedding predicts AD conversion. TA‐RNN was evaluated on Alzheimer’s Disease Neuroimaging Initiative (ADNI) and National Alzheimer’s Coordinating Center (NACC) datasets based on F2 score and sensitivity. ResultMultiple TA‐RNN models were trained with two, three, five, or six visits to predict the diagnosis at the next visit. In one setup, the models were trained and tested on ADNI. In another setup, the models were trained on the entire ADNI dataset and evaluated on the entire NACC dataset. The results indicated superior performance of TA‐RNN compared to state‐of‐the‐art (SOTA) and baseline approaches for both setups (Figure 2A and 2B). Based on attention weights, we also highlighted significant visits (Figure 3A) and features (Figure 3B) and observed that CDRSB and FAQ features and the most recent visit had highest influence in predictions. ConclusionWe propose TA‐RNN, an interpretable model to predict MCI to AD conversion while handling irregular time intervals. TA‐RNN outperformed SOTA and baseline methods in multiple experiments.more » « less
-
Abstract INTRODUCTIONOlder adults represent the fastest growing segment of the homeless community. Little is known about the prevalence of dementia and mild cognitive impairment (MCI) in this population. METHODSDementia and MCI screening using the Montreal Cognitive Assessment (MoCA) was incorporated into the standard senior evaluation for adult clients aged ≥ 55 in a large emergency homeless shelter. RESULTSIn a 6‐week period, 104 of 112 (92.9%) assessments were positive for dementia or MCI using a standard cutoff of 26, and 81 (72.3%) were positive using a conservative cutoff of 23. There was no significant difference in MoCA scores based on sex or education level, and no significant correlation between age and MoCA score. DISCUSSIONOlder adults experiencing homelessness may have a high likelihood of dementia or MCI. Routine MoCA screening in older adults experiencing homelessness is feasible and can help to identify services needed to successfully exit homelessness.more » « less
An official website of the United States government
