Abstract We performed the transport of a breast cancer cell (MB231-TGFb) in a microvessel using high-resolution simulations. Using open-source imaging software Slicer3D and Meshmixer, the 3D surface mesh forming the cell membrane was reconstructed from confocal microscopic images. The Dissipative Particle Dynamics method is used to model the cell membrane. The extracellular fluid flow is modeled with the Immersed Boundary Method to solve the governing equations of the blood plasma. The unsteady flow is applied at the inlet of the microchannel with an oscillatory pattern. Our results showed that the extracellular flow patterns are highly dependent on the waveform profile. The oscillatory flow showed the creation of vortices that influence the cellular deformations in the microchannel. These results could have implications on the destination of the cancer cells during transport in physiological flows.
more »
« less
Migration of Leukocytes in Shear Flows: Insights from Simulations
Abstract The objective of this study is to investigate the rolling dynamics of leukocytes in microchannel flows using a hybrid continuum-particle approach. Leukocytes play an essential role in the immune system, and their margination behavior has been extensively studied both experimentally and numerically. In this study, we have developed a series of numerical experiments using a hybrid DPD-CFD solver with the membrane stiffness of the modeled leukocytes as the primary investigation subject. Our results show that increasing the stiffness of the cell's membrane influences its deformability and trajectory in microchannel flows. The results obtained from this study could be valuable in designing next-generation micro-carriers for targeted drug delivery systems, which mimic the margination behavior of leukocytes.
more »
« less
- Award ID(s):
- 1946202
- PAR ID:
- 10579309
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- ISBN:
- 978-0-7918-8775-2
- Format(s):
- Medium: X
- Location:
- Minneapolis, MN, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The margination and adhesion of micro-particles (MPs) have been extensively investigated separately, due to their important applications in the biomedical field. However, the cascade process from margination to adhesion should play an important role in the transport of MPs in blood flow. To the best of our knowledge, this has not been explored in the past. Here we numerically study the margination behaviour of elastic MPs to blood vessel walls under the interplay of their deformability and adhesion to the vessel wall. We use the lattice Boltzmann method and molecular dynamics to solve the fluid dynamics and particle dynamics (including red blood cells (RBCs) and elastic MPs) in blood flow, respectively. Additionally, a stochastic ligand–receptor binding model is employed to capture the adhesion behaviours of elastic MPs on the vessel wall. Margination probability is used to quantify the localization of elastic MPs at the wall. Two dimensionless numbers are considered to govern the whole process: the capillary number $Ca$ , denoting the ratio of viscous force of fluid flow to elastic interfacial force of MP, and the adhesion number $Ad$ , representing the ratio of adhesion strength to viscous force of fluid flow. We systematically vary them numerically and a margination probability contour is obtained. We find that there exist two optimal regimes favouring high margination probability on the plane $$Ca{-}Ad$$ . The first regime, namely region I, is that with high adhesion strength and moderate particle stiffness; the other one, region II, has moderate adhesion strength and large particle stiffness. We conclude that the existence of optimal regimes is governed by the interplay of particle deformability and adhesion strength. The corresponding underlying mechanism is also discussed in detail. There are three major factors that contribute to the localization of MPs: (i) near-wall hydrodynamic collision between RBCs and MPs; (ii) deformation-induced migration due to the presence of the wall; and (iii) adhesive interaction between MPs and the wall. Mechanisms (i) and (iii) promote margination, while (ii) hampers margination. These three factors perform different roles and compete against each other when MPs are located in different regions of the flow channel, i.e. near-wall region. In optimal region I, adhesion outperforms deformation-induced migration; and in region II, the deformation-induced migration is small compared to the coupling of near-wall hydrodynamic collision and adhesion. The finding of optimal regimes can help the understanding of localization of elastic MPs at the wall under the adhesion effect in blood flow. More importantly, our results suggest that softer MP or stronger adhesion is not always the best choice for the localization of MPs.more » « less
-
Abstract This paper explores the production of an oxide dispersion strengthened (ODS) 304L stainless steel microchannel heat exchanger (HX) using a hybrid additive manufacturing process of laser powder bed fusion and inkjet printing. The study investigates the capabilities and economics of the hybrid inkjet-laser powder bed fusion (LPBF) process and evaluates the dimensional accuracy, functionality, and mechanical properties of the resulting ODS alloy. The effectiveness and pressure drop of the ODS heat exchangers produced by the hybrid LPBF tool are also determined. Results show that the inkjet-doped samples have a lower mean channel height with higher standard deviation than samples produced by LPBF alone. This is attributed to greater absorption of laser energy for the powder coated with the oxide precursor. The economic analysis shows that the hybrid process has a potential for reducing the unit cost of the heat exchanger based on cost modeling assumptions.more » « less
-
Abstract Isolation and detection of circulating tumor cells (CTCs) hold significant importance for the early diagnosis of cancer and the assessment of therapeutic strategies. However, the scarcity of CTCs among peripheral blood cells presents a major challenge to their detection. Additionally, a similar size range between CTCs and white blood cells (WBCs) makes conventional microfluidic platforms inadequate for the isolation of CTCs. To overcome these challenges, in this study, a novel inertial‐dielectrophoretic microfluidic channel for size‐independent, single‐stage separation of CTCs from WBCs has been presented. The proposed device utilizes a spiral microchannel embedded with interdigitated electrodes. A numerical model is developed and validated to investigate the influence of various parameters related to the channel design, fluid flow, and electrode configuration. It was found that optimal separation of CTCs could be obtained at a relatively low voltage, termed the critical voltage. Furthermore, at the critical voltage of 7.5 V, the hybrid microchannel is demonstrated to be capable of separating CTCs from different WBC subtypes including granulocytes, monocytes, T‐, and B‐lymphocytes. The unique capabilities of the hybrid spiral microchannel allow for this size‐independent isolation of CTCs from a mixture of WBCs. Overall, the proposed technique can be readily utilized for continuous and high‐throughput separation of cancer cells.more » « less
An official website of the United States government

