skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interplay of deformability and adhesion on localization of elastic micro-particles in blood flow
The margination and adhesion of micro-particles (MPs) have been extensively investigated separately, due to their important applications in the biomedical field. However, the cascade process from margination to adhesion should play an important role in the transport of MPs in blood flow. To the best of our knowledge, this has not been explored in the past. Here we numerically study the margination behaviour of elastic MPs to blood vessel walls under the interplay of their deformability and adhesion to the vessel wall. We use the lattice Boltzmann method and molecular dynamics to solve the fluid dynamics and particle dynamics (including red blood cells (RBCs) and elastic MPs) in blood flow, respectively. Additionally, a stochastic ligand–receptor binding model is employed to capture the adhesion behaviours of elastic MPs on the vessel wall. Margination probability is used to quantify the localization of elastic MPs at the wall. Two dimensionless numbers are considered to govern the whole process: the capillary number $Ca$ , denoting the ratio of viscous force of fluid flow to elastic interfacial force of MP, and the adhesion number $Ad$ , representing the ratio of adhesion strength to viscous force of fluid flow. We systematically vary them numerically and a margination probability contour is obtained. We find that there exist two optimal regimes favouring high margination probability on the plane $$Ca{-}Ad$$ . The first regime, namely region I, is that with high adhesion strength and moderate particle stiffness; the other one, region II, has moderate adhesion strength and large particle stiffness. We conclude that the existence of optimal regimes is governed by the interplay of particle deformability and adhesion strength. The corresponding underlying mechanism is also discussed in detail. There are three major factors that contribute to the localization of MPs: (i) near-wall hydrodynamic collision between RBCs and MPs; (ii) deformation-induced migration due to the presence of the wall; and (iii) adhesive interaction between MPs and the wall. Mechanisms (i) and (iii) promote margination, while (ii) hampers margination. These three factors perform different roles and compete against each other when MPs are located in different regions of the flow channel, i.e. near-wall region. In optimal region I, adhesion outperforms deformation-induced migration; and in region II, the deformation-induced migration is small compared to the coupling of near-wall hydrodynamic collision and adhesion. The finding of optimal regimes can help the understanding of localization of elastic MPs at the wall under the adhesion effect in blood flow. More importantly, our results suggest that softer MP or stronger adhesion is not always the best choice for the localization of MPs.  more » « less
Award ID(s):
1755779
PAR ID:
10085627
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
861
ISSN:
0022-1120
Page Range / eLocation ID:
55 to 87
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study investigates the shear rate dependent margination of micro-particles (MPs) with different shapes in blood flow through numerical simulations. We develop a multiscale computational model to handle the fluid–structure interactions involved in the blood flow simulations. The lattice Boltzmann method (LBM) is used to solve the plasma dynamics and a coarse-grained model is employed to capture the dynamics of red blood cells (RBCs) and MPs. These two solvers are coupled together by the immersed boundary method (IBM). The shear rate dependent margination of sphere MPs is firstly investigated. We find that margination of sphere MPs dramatically increases with the increment of wall shear rate  ω under 800 s −1 , induced by the breaking of rouleaux in blood flow. However, the margination probability only slowly grows when  ω > 800 s −1 . Furthermore, the shape effect of MPs is examined by comparing the margination behaviors of sphere-like, oblate-like and prolate-like MPs under different wall shear rates. We find that the margination of MPs is governed by the interplay of two factors: hydrodynamic collisions with RBCs including the collision frequency and collision displacement of MPs, and near wall dynamics. MPs that demonstrate poor performance in one process such as collision frequency may stand out in the other process like near wall dynamics. Specifically, the ellipsoidal MPs (oblate and prolate) with small aspect ratio (AR) outperform those with large AR regardless of the wall shear rate, due to their better performance in both the collision with RBCs and near wall dynamics. Additionally, we find there exists a transition shear rate region 700 s −1 <  ω < 900 s −1 for all of these MPs: the margination probability dramatically increases with the shear rate below this region and slowly grows above this region, similar to sphere MPs. We further use the surface area to volume ratio (SVR) to distinguish different shaped MPs and illustrate their shear rate dependent margination in a contour in the shear rate–SVR plane. It is of significance that we can approximately predict the margination of MPs with a specific SVR. All these simulation results can be potentially applied to guide the design of micro-drug carriers for biomedical applications. 
    more » « less
  2. AbstractSickle cell disease (SCD) is canonically characterized by reduced red blood cell (RBC) deformability, leading to microvascular obstruction and inflammation. Although the biophysical properties of sickle RBCs are known to influence SCD vasculopathy, the contribution of poor RBC deformability to endothelial dysfunction has yet to be fully explored. Leveraging interrelated in vitro and in silico approaches, we introduce a new paradigm of SCD vasculopathy in which poorly deformable sickle RBCs directly cause endothelial dysfunction via mechanotransduction, during which endothelial cells sense and pathophysiologically respond to aberrant physical forces independently of microvascular obstruction, adhesion, or hemolysis. We demonstrate that perfusion of sickle RBCs or pharmacologically-dehydrated healthy RBCs into small venule-sized “endothelialized” microfluidics leads to pathologic physical interactions with endothelial cells that directly induce inflammatory pathways. Using a combination of computational simulations and large venule-sized endothelialized microfluidics, we observed that perfusion of heterogeneous sickle RBC subpopulations with varying deformability, as well as suspensions of dehydrated normal RBCs admixed with normal RBCs, leads to aberrant margination of the less-deformable RBC subpopulations toward the vessel walls, causing localized, increased shear stress. Increased wall stress is dependent on the degree of subpopulation heterogeneity and oxygen tension and leads to inflammatory endothelial gene expression via mechanotransductive pathways. Our multifaceted approach demonstrates that the presence of sickle RBCs with reduced deformability leads directly to pathological physical (ie, direct collisions and/or compressive forces) and shear-mediated interactions with endothelial cells and induces an inflammatory response, thereby elucidating the ubiquity of vascular dysfunction in SCD. 
    more » « less
  3. Beard, Daniel A (Ed.)
    The geometry of the blood vessel wall plays a regulatory role on the motion of red blood cells (RBCs). The overall topography of the vessel wall depends on many features, among which the endothelial lining of the endothelial surface layer (ESL) is an important one. The endothelial lining of vessel walls presents a large surface area for exchanging materials between blood and tissues. The ESL plays a critical role in regulating vascular permeability, hindering leukocyte adhesion as well as inhibiting coagulation during inflammation. Changes in the ESL structure are believed to cause vascular hyperpermeability and entrap immune cells during sepsis, which could significantly alter the vessel wall geometry and disturb interactions between RBCs and the vessel wall, including the wall-induced migration of RBCs and the thickening of a cell-free layer. To investigate the influence of the vessel wall geometry particularly changed by the ESL under various pathological conditions, such as sepsis, on the motion of RBCs, we developed two models to represent the ESL using the immersed boundary method in two dimensions. In particular, we used simulations to study how the lift force and drag force on a RBC near the vessel wall vary with different wall thickness, spatial variation, and permeability associated with changes in the vessel wall geometry. We find that the spatial variation of the wall has a significant effect on the wall-induced migration of the RBC for a high permeability, and that the wall-induced migration is significantly inhibited as the vessel diameter is increased. 
    more » « less
  4. Hydrodynamic interactions generate a diffusive motion in particulates in a shear flow, which plays seminal roles in overall particulate rheology and its microstructure. Here we investigate the shear induced diffusion in a red-blood cell (RBC) suspension using a numerical simulation resolving individual motion and deformation of RBCs. The non-spherical resting shape of RBCs gives rise to qualitatively different regimes of cell dynamics in a shear flow such as tank-treading, breathing, tumbling and swinging, depending on the cell flexibility determined by the elastic capillary number. We show that the transition from tumbling to tank-treading causes a reduction in the gradient diffusivity. The diffusivity is computed using a continuum approach from the evolution of a randomly packed cell-layer width with time as well as by the dynamic structure factor of the suspension. Both approaches, although operationally different, match and show that for intermediate capillary numbers RBCs cease tumbling accompanied by a drop in the coefficient of gradient diffusivity. A further increase of capillary number increases the diffusivity due to increased deformation. The effects of bending modulus and viscosity ratio variations are also briefly investigated. The computed shear induced diffusivity was compared with values in the literature. Apart from its effects in margination of cells in blood flow and use in medical diagnostics, the phenomenon broadly offers important insights into suspensions of deformable particles with non-spherical equilibrium shapes, which also could play a critical role in using particle flexibility for applications such as label free separation or material processing. 
    more » « less
  5. Microcirculatory obstruction is a hallmark of severe malaria, but mechanisms of parasite sequestration are only partially understood. Here, we developed a robust three-dimensional microvessel model that mimics the arteriole-capillary-venule (ACV) transition consisting of a narrow 5- to 10-μm-diameter capillary region flanked by arteriole- or venule-sized vessels. Using this platform, we investigated red blood cell (RBC) transit at the single cell and at physiological hematocrits. We showed normal RBCs deformed via in vivo–like stretching and tumbling with negligible interactions with the vessel wall. By comparison, Plasmodium falciparum –infected RBCs exhibited virtually no deformation and rapidly accumulated in the capillary-sized region. Comparison of wild-type parasites to those lacking either cytoadhesion ligands or membrane-stiffening knobs showed highly distinctive spatial and temporal kinetics of accumulation, linked to velocity transition in ACVs. Our findings shed light on mechanisms of microcirculatory obstruction in malaria and establish a new platform to study hematologic and microvascular diseases. 
    more » « less