skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chromoanagenesis in plants: triggers, mechanisms, and potential impact
Chromoanagenesis is a single catastrophic event that involves, in most cases, localized chromosomal shattering and reorganization, resulting in a dramatically restructured chromosome. First discovered in cancer cells, it has since been observed in various other systems, including plants. In this review, we discuss the origin, characteristics, and potential mechanisms underlying chromoanagenesis in plants. We report that multiple processes, including mutagenesis and genetic engineering, can trigger chromoanagenesis via a variety of mechanisms such as micronucleation, breakage–fusion–bridge (BFB) cycles, or chain-like translocations. The resulting rearranged chromosomes can be preserved during subsequent plant growth, and sometimes inherited to the next generation. Because of their high tolerance to genome restructuring, plants offer a unique system for investi- gating the evolutionary consequences and potential practical applications of chromoanagenesis.  more » « less
Award ID(s):
1956429
PAR ID:
10579333
Author(s) / Creator(s):
; ;
Publisher / Repository:
Cell Press
Date Published:
Journal Name:
Trends in Genetics
Volume:
39
Issue:
1
ISSN:
0168-9525
Page Range / eLocation ID:
34 to 45
Subject(s) / Keyword(s):
chromoanagenesis genome instability micronucleation breakage–fusion–bridge (BFB) cycles chain-like translocations missegregation haploid induction
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Habitat fragmentation remains a major focus of research by ecologists decades after being put forward as a threat to the integrity of ecosystems. While studies have documented myriad biotic changes in fragmented landscapes, including the local extinction of species from fragments, the demographic mechanisms underlying these extinctions are rarely known. However, many of them – especially in lowland tropical forests – are thought to be driven by one of two mechanisms: (1) reduced recruitment in fragments resulting from changes in the diversity or abundance of pollinators and seed dispersers or (2) increased rates of individual mortality in fragments due to dramatically altered abiotic conditions, especially near fragment edges. Unfortunately, there have been few tests of these potential mechanisms due to the paucity of long-term and comprehensive demographic data collected in both forest fragments and continuous forest sites. Here we report 11 years (1998-2009) of demographic data from populations of the Amazonian understory herb Heliconia acuminata (LC Rich.) found at Brazil’s Biological Dynamics of Forest Fragments Project (BDFFP). The resulting data set comprises 66000 plant×year records of 8586 plants, including 3464 seedlings that became established after the initial census. Seven populations were in experimentally isolated fragments (one in each of four 1-ha fragments and one in each of three 10-ha fragments), with the remaining six populations in continuous forest. Each population was in a 50×100m permanent plot, with the distance between plots ranging from 500 m-60 km. The plants in each plot were censused annually, at which time we recorded, identified, marked, and measured new seedlings, identified any previously marked plants that died, and recorded the size of surviving individuals. Each plot was also surveyed 4-5 times during the flowering season to identify reproductive plants and record the number of inflorescences each produced. These data have been used to investigate topics ranging from the way fragmentation-related reductions in germination influence population dynamics to statistical methods for analyzing reproductive rates. This breadth of prior use reflects the value of these data to future researchers. In addition to analyses of plant responses to habitat fragmentation, these data can be used to address fundamental questions in plant demography, the evolutionary ecology of tropical plants, and for developing and testing demographic models and tools. Though we welcome opportunities to collaborate with interested users, there are no restrictions on the use this data set. However, we do request that those using the data for teaching or research inform us of how they are doing so and cite this paper and the data archive when appropriate. Any publication using the data must also include a BDFFP Technical Series Number in the Acknowledgments. Authors can request this series number upon the acceptance of their article by contacting the BDFFP’s Scientific Coordinator or E. M. Bruna. 
    more » « less
  2. Plant diseases resulting from pathogens and pests constitute a persistent threat to global food security. Pathogenic infections of plants are influenced by environmental factors; a concept encapsulated in the “disease triangle” model. It is important to elucidate the complex molecular mechanisms underlying the interactions among plants, their pathogens and various environmental factors in the disease triangle. This review aims to highlight recent advancements in the application of systems biology to enhance understanding of the plant disease triangle within the context of microbiome rising to become the 4th dimension. Recent progress in microbiome research utilizing model plant species has begun to illuminate the roles of specific microorganisms and the mechanisms of plant–microbial interactions. We will examine (1) microbiome-mediated functions related to plant growth and protection, (2) advancements in systems biology, (3) current -omics methodologies and new approaches, and (4) challenges and future perspectives regarding the exploitation of plant defense mechanisms via microbiomes. It is posited that systems biology approaches such as single-cell RNA sequencing and mass spectrometry-based multi-omics can decode plant defense mechanisms. Progress in this significant area of plant biology has the potential to inform rational crop engineering and breeding strategies aimed at enhancing disease resistance without compromising other pathways that affect crop yield. 
    more » « less
  3. Abstract An overlooked phenomenon is a potential increase in the distribution and abundance of plants with the highly water-usage-efficient crassulacean acid metabolism (CAM). In the present article, we critically analyze recent research to investigate to what extent and why CAM plants may have recently expanded their range and abundance under global change. We discuss the ecophysiological and evolutionary mechanisms linked with CAM succulence and the drivers underlying potential CAM expansion, including drought, warming, and atmospheric carbon dioxide enrichment. We further map the biogeographic pattern of CAM expansion and show that some CAM plants (e.g., Cylindropuntia, Opuntia, and Agave) are expanding and encroaching within dryland landscapes worldwide. Our results collectively highlight the recent expansion of CAM plants, a trend that could be sustained under increasing aridity with climate change. We recommend that CAM expansion be evaluated in a data-model integrated framework to better understand and predict the ecological and socioeconomic consequences of CAM expansion during the Anthropocene. 
    more » « less
  4. Plants defend themselves from most microbial attacks via mechanisms including cell wall fortification, production of antimicrobial compounds, and generation of reactive oxygen species. Successful pathogens overcome these host defenses, as well as obtain nutrients from the host. Perturbations of plant metabolism play a central role in determining the outcome of attempted infections. Metabolomic analyses, for example between healthy, newly infected and diseased or resistant plants, have the potential to reveal perturbations to signaling or output pathways with key roles in determining the outcome of a plant–microbe interaction. However, application of this -omic and its tools in plant pathology studies is lagging relative to genomic and transcriptomic methods. Thus, it is imperative to bring the power of metabolomics to bear on the study of plant resistance/susceptibility. This review discusses metabolomics studies that link changes in primary or specialized metabolism to the defense responses of plants against bacterial, fungal, nematode, and viral pathogens. Also examined are cases where metabolomics unveils virulence mechanisms used by pathogens. Finally, how integrating metabolomics with other -omics can advance plant pathology research is discussed. 
    more » « less
  5. Abstract Habitat fragmentation remains a major focus of research by ecologists decades after being put forward as a threat to the integrity of ecosystems. While studies have documented myriad biotic changes in fragmented landscapes, including the local extinction of species from fragments, the demographic mechanisms underlying these extinctions are rarely known. However, many of them—especially in lowland tropical forests—are thought to be driven by one of two mechanisms: (1) reduced recruitment in fragments resulting from changes in the diversity or abundance of pollinators and seed dispersers or (2) increased rates of individual mortality in fragments due to dramatically altered abiotic conditions, especially near fragment edges. Unfortunately, there have been few tests of these potential mechanisms due to the paucity of long‐term and comprehensive demographic data collected in both forest fragments and continuous forest sites. Here we report 11 years (1998–2009) of demographic data from populations of the Amazonian understory herbHeliconia acuminata(LC Rich.) found at Brazil's Biological Dynamics of Forest Fragments Project (BDFFP). The data set comprises >66,000 plant × year records of 8586 plants, including 3464 seedlings established after the first census. Seven populations were in experimentally isolated fragments (one in each of four 1‐ha fragments and one in each of three 10‐ha fragments), with the remaining six populations in continuous forest. Each population was in a 50 × 100 m permanent plot, with the distance between plots ranging from 500 m to 60 km. The plants in each plot were censused annually, at which time we recorded, identified, marked, and measured new seedlings, identified any previously marked plants that died, and recorded the size of surviving individuals. Each plot was also surveyed four to five times during the flowering season to identify reproductive plants and record the number of inflorescences each produced. These data have been used to investigate topics ranging from the way fragmentation‐related reductions in germination influence population dynamics to statistical methods for analyzing reproductive rates. This breadth of prior use reflects the value of these data to future researchers. In addition to analyses of plant responses to habitat fragmentation, these data can be used to address fundamental questions in plant demography and the evolutionary ecology of tropical plants and to develop and test demographic models and tools. Though we welcome opportunities to collaborate with interested users, there are no restrictions on the use of this data set. However, we do request that those using the data for teaching or research purposes inform us of how they are doing so and cite this paper and the data archive when appropriate. Any publication using the data must also include a BDFFP Technical Series Number in the Acknowledgments. Authors can request this series number upon the acceptance of their article by contacting the BDFFP's Scientific Coordinator or E. M. Bruna. 
    more » « less