skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A database of upper limb surface electromyogram signals from demographically diverse individuals
Abstract Upper limb based neuromuscular interfaces aim to provide a seamless way for humans to interact with technology. Among noninvasive interfaces, surface electromyogram (EMG) signals hold significant promise. However, their sensitivity to physiological and anatomical factors remains poorly understood, raising questions about how these factors influence gesture decoding across individuals or groups. To facilitate the study of signal distribution shifts across individuals or groups of individuals, we present a dataset of upper limb EMG signals and physiological measures from 91 demographically diverse adults. Participants were selected to represent a range of ages (18 to 92 years) and body mass indices (healthy, overweight, and obese). The dataset also includes measures such as skin hydration and elasticity, which may affect EMG signals. This dataset provides a basis to study demographic confounds in EMG signals and serves as a benchmark to test the development of fair and unbiased algorithms that enable accurate hand gesture decoding across demographically diverse subjects. Additionally, we validate the quality of the collected data using state-of-the-art gesture decoding techniques.  more » « less
Award ID(s):
2152260
PAR ID:
10579350
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Volume:
12
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objective. Advanced robotic lower limb prostheses are mainly controlled autonomously. Although the existing control can assist cyclic movements during locomotion of amputee users, the function of these modern devices is still limited due to the lack of neuromuscular control (i.e. control based on human efferent neural signals from the central nervous system to peripheral muscles for movement production). Neuromuscular control signals can be recorded from muscles, called electromyographic (EMG) or myoelectric signals. In fact, using EMG signals for robotic lower limb prostheses control has been an emerging research topic in the field for the past decade to address novel prosthesis functionality and adaptability to different environments and task contexts. The objective of this paper is to review robotic lower limb Prosthesis control via EMG signals recorded from residual muscles in individuals with lower limb amputations. Approach. We performed a literature review on surgical techniques for enhanced EMG interfaces, EMG sensors, decoding algorithms, and control paradigms for robotic lower limb prostheses. Main results. This review highlights the promise of EMG control for enabling new functionalities in robotic lower limb prostheses, as well as the existing challenges, knowledge gaps, and opportunities on this research topic from human motor control and clinical practice perspectives. Significance. This review may guide the future collaborations among researchers in neuromechanics, neural engineering, assistive technologies, and amputee clinics in order to build and translate true bionic lower limbs to individuals with lower limb amputations for improved motor function. 
    more » « less
  2. Tigrini, Andrea (Ed.)
    Hand gesture classification is crucial for the control of many modern technologies, ranging from virtual and augmented reality systems to assistive mechatronic devices. A prominent control technique employs surface electromyography (EMG) and pattern recognition algorithms to identify specific patterns in muscle electrical activity and translate these to device commands. While being well established in consumer, clinical, and research applications, this technique suffers from misclassification errors caused by limb movements and the weight of manipulated objects, both vital aspects of how we use our hands in daily life. An emerging alternative control technique is force myography (FMG) which uses pattern recognition algorithms to predict hand gestures from the axial forces present at the skin’s surface created by contractions of the underlying muscles. As EMG and FMG capture different physiological signals associated with muscle contraction, we hypothesized that each may offer unique additional information for gesture classification, potentially improving classification accuracy in the presence of limb position and object loading effects. Thus, we tested the effect of limb position and grasped load on 3 different sensing modalities: EMG, FMG, and the fused combination of the two. 27 able-bodied participants performed a grasp and release task with 4 hand gestures at 8 positions and under 5 object weight conditions. We then examined the effects of limb position and grasped load on gesture classification accuracy across each sensing modality. It was found that position and grasped load had statistically significant effects on the classification performance of the 3 sensing modalities and that the combination of EMG and FMG provided the highest classification accuracy of hand gesture, limb position, and grasped load combinations (97.34%) followed by FMG (92.27%) and then EMG (82.84%). This points to the fact that the addition of FMG to traditional EMG control systems offers unique additional data for more effective device control and can help accommodate different limb positions and grasped object loads. 
    more » « less
  3. Background: Myoelectric-based decoding has gained popularity in upper-limb neural-machine interfaces. Motor unit (MU) firings decomposed from surface electromyographic (EMG) signals can represent motor intent, but EMG properties at different arm configurations can change due to electrode shift and differing neuromuscular states. This study investigated whether isometric fingertip force estimation using MU firings is robust to forearm rotations from a neutral to either a fully pronated or supinated posture. Methods: We extracted MU information from high-density EMG of the extensor digitorum communis in two ways: (1) Decomposed EMG in all three postures (MU-AllPost); and (2) Decomposed EMG in neutral posture (MU-Neu), and extracted MUs (separation matrix) were applied to other postures. Populational MU firing frequency estimated forces scaled to subjects’ maximum voluntary contraction (MVC) using a regression analysis. The results were compared with the conventional EMG-amplitude method. Results: We found largely similar root-mean-square errors (RMSE) for the two MU-methods, indicating that MU decomposition was robust to postural differences. MU-methods demonstrated lower RMSE in the ring (EMG = 6.23, MU-AllPost = 5.72, MU-Neu = 5.64 %MVC) and pinky (EMG = 6.12, MU-AllPost = 4.95, MU-Neu = 5.36 %MVC) fingers, with mixed results in the middle finger (EMG = 5.47, MU-AllPost = 5.52, MU-Neu = 6.19% MVC). Conclusion: Our results suggest that MU firings can be extracted reliably with little influence from forearm posture, highlighting its potential as an alternative decoding scheme for robust and continuous control of assistive devices. 
    more » « less
  4. Abstract Objective.Non-invasive electroencephalograms (EEG)-based brain–computer interfaces (BCIs) play a crucial role in a diverse range of applications, including motor rehabilitation, assistive and communication technologies, holding potential promise to benefit users across various clinical spectrums. Effective integration of these applications into daily life requires systems that provide stable and reliable BCI control for extended periods. Our prior research introduced the AIRTrode, a self-adhesive (A), injectable (I), and room-temperature (RT) spontaneously-crosslinked hydrogel electrode (AIRTrode). The AIRTrode has shown lower skin-contact impedance and greater stability than dry electrodes and, unlike wet gel electrodes, does not dry out after just a few hours, enhancing its suitability for long-term application. This study aims to demonstrate the efficacy of AIRTrodes in facilitating reliable, stable and long-term online EEG-based BCI operations.Approach.In this study, four healthy participants utilized AIRTrodes in two BCI control tasks–continuous and discrete–across two sessions separated by six hours. Throughout this duration, the AIRTrodes remained attached to the participants’ heads. In the continuous task, participants controlled the BCI through decoding of upper-limb motor imagery (MI). In the discrete task, the control was based on decoding of error-related potentials (ErrPs).Main Results.Using AIRTrodes, participants demonstrated consistently reliable online BCI performance across both sessions and tasks. The physiological signals captured during MI and ErrPs tasks were valid and remained stable over sessions. Lastly, both the BCI performances and physiological signals captured were comparable with those from freshly applied, research-grade wet gel electrodes, the latter requiring inconvenient re-application at the start of the second session.Significance.AIRTrodes show great potential promise for integrating non-invasive BCIs into everyday settings due to their ability to support consistent BCI performances over extended periods. This technology could significantly enhance the usability of BCIs in real-world applications, facilitating continuous, all-day functionality that was previously challenging with existing electrode technologies. 
    more » « less
  5. Abstract Objective. Neurological disorders affecting speech production adversely impact quality of life for over 7 million individuals in the US. Traditional speech interfaces like eye-tracking devices and P300 spellers are slow and unnatural for these patients. An alternative solution, speech brain-computer interfaces (BCIs), directly decodes speech characteristics, offering a more natural communication mechanism. This research explores the feasibility of decoding speech features using non-invasive EEG.Approach. Nine neurologically intact participants were equipped with a 63-channel EEG system with additional sensors to eliminate eye artifacts. Participants read aloud sentences selected for phonetic similarity to the English language. Deep learning models, including Convolutional Neural Networks and Recurrent Neural Networks with and without attention modules, were optimized with a focus on minimizing trainable parameters and utilizing small input window sizes for real-time application. These models were employed for discrete and continuous speech decoding tasks.Main results. Statistically significant participant-independent decoding performance was achieved for discrete classes and continuous characteristics of the produced audio signal. A frequency sub-band analysis highlighted the significance of certain frequency bands (delta, theta, gamma) for decoding performance, and a perturbation analysis was used to identify crucial channels. Assessed channel selection methods did not significantly improve performance, suggesting a distributed representation of speech information encoded in the EEG signals. Leave-One-Out training demonstrated the feasibility of utilizing common speech neural correlates, reducing data collection requirements from individual participants.Significance. These findings contribute significantly to the development of EEG-enabled speech synthesis by demonstrating the feasibility of decoding both discrete and continuous speech features from EEG signals, even in the presence of EMG artifacts. By addressing the challenges of EMG interference and optimizing deep learning models for speech decoding, this study lays a strong foundation for EEG-based speech BCIs. 
    more » « less