skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nonlinear steepest descent on a torus: a case study of the Landau–Lifshitz equation
Abstract We obtain rigorous large time asymptotics for the Landau–Lifshitz (LL) equation in the soliton free case by extending the nonlinear steepest descent method to genus 1 surfaces. The methods presented in this paper pave the way to a rigorous analysis of other integrable equations on the torus and enable asymptotic analysis on different regimes of the LL equation.  more » « less
Award ID(s):
1955265
PAR ID:
10579366
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Nonlinearity
Volume:
38
Issue:
4
ISSN:
0951-7715
Format(s):
Medium: X Size: Article No. 045023
Size(s):
Article No. 045023
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Landau–Lifshitz (LL) equation has been proposed as the classical equation to describe the dynamics of a charged particle in a strong electromagnetic field when influenced by radiation reaction. Until recently, there has been no clear experimental verification. However, aligned crystals have remedied the situation: here, as in Nielsen et al CERN NA63 Collaboration (2020 Phys. Rev. D 102 052004), we report on a quantitative experimental test of the LL equation by measuring the emission spectra of electrons and positrons penetrating aligned single crystals. The recorded spectra are in remarkable agreement with simulations based on the LL equation of motion with moderate quantum corrections for recoil and, in the case of electrons in axially aligned crystals, spin and reduced radiation intensity. 
    more » « less
  2. Abstract We consider the Vlasov equation in any spatial dimension, which has long been known [ZI76, Mor80, Gib81, MW82] to be an infinite-dimensional Hamiltonian system whose bracket structure is ofLie–Poisson type. In parallel, it is classical that the Vlasov equation is amean-field limitfor a pairwise interacting Newtonian system. Motivated by this knowledge, we provide a rigorous derivation of the Hamiltonian structure of the Vlasov equation, both the Hamiltonian functional and Poisson bracket, directly from the many-body problem. One may view this work as a classical counterpart to [MNP+20], which provided a rigorous derivation of the Hamiltonian structure of the cubic nonlinear Schrödinger equation from the many-body problem for interacting bosons in a certain infinite particle number limit, the first result of its kind. In particular, our work settles a question of Marsden, Morrison and Weinstein [MMW84] on providing a ‘statistical basis’ for the bracket structure of the Vlasov equation. 
    more » « less
  3. null (Ed.)
    We prove well-posedness and regularity of solutions to a fractional diffusion porous media equation with a variable fractional order that may depend on the unknown solution. We present a linearly implicit time-stepping method to linearize and discretize the equation in time, and present rigorous analysis for the convergence of numerical solutions based on proved regularity results. 
    more » « less
  4. The synchronization dynamics for the circadian gene expression in the suprachiasmatic nucleus is investigated using a transcriptional circadian clock gene oscillator model. With global coupling in constant dark (DD) conditions, the model exhibits a one-cluster phase synchronized state, in dim light (dim LL), bistability between one- and two-cluster states and in bright LL, a two-cluster state. The two-cluster phase synchronized state, where some oscillator pairs synchronize in-phase, and some anti-phase, can explain the splitting of the circadian clock, i.e., generation of two bouts of daily activities with certain species, e.g., with hamsters. The one- and two-cluster states can be reached by transferring the animal from DD or bright LL to dim LL, i.e., the circadian synchrony has a memory effect. The stability of the one- and two-cluster states was interpreted analytically by extracting phase models from the ordinary differential equation models. In a modular network with two strongly coupled oscillator populations with weak intragroup coupling, with appropriate initial conditions, one group is synchronized to the one-cluster state and the other group to the two-cluster state, resulting in a weak-chimera state. Computational modeling suggests that the daily rhythms in sleep–wake depend on light intensity acting on bilateral networks of suprachiasmatic nucleus (SCN) oscillators. Addition of a network heterogeneity (coupling between the left and right SCN) allowed the system to exhibit chimera states. The simulations can guide experiments in the circadian rhythm research to explore the effect of light intensity on the complexities of circadian desynchronization. 
    more » « less
  5. Abstract This paper focuses on dynamics of systems of particles that allow interactions beyond binary, and their behavior as the number of particles goes to infinity. More precisely, the paper provides the first rigorous derivation of a binary-ternary Boltzmann equation describing the kinetic properties of a gas consisting of hard spheres, where particles undergo either binary or ternary instantaneous interactions, while preserving momentum and energy. An important challenge we overcome in deriving this equation is related to providing a mathematical framework that allows us to detect both binary and ternary interactions. Furthermore, this paper introduces new algebraic and geometric techniques in order to eventually decouple binary and ternary interactions and understand the way they could succeed one another in time. We expect that this paper can serve as a guideline for deriving a generalized Boltzmann equation that incorporates higher-order interactions among particles. 
    more » « less