skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental verification of the Landau–Lifshitz equation
Abstract The Landau–Lifshitz (LL) equation has been proposed as the classical equation to describe the dynamics of a charged particle in a strong electromagnetic field when influenced by radiation reaction. Until recently, there has been no clear experimental verification. However, aligned crystals have remedied the situation: here, as in Nielsen et al CERN NA63 Collaboration (2020 Phys. Rev. D 102 052004), we report on a quantitative experimental test of the LL equation by measuring the emission spectra of electrons and positrons penetrating aligned single crystals. The recorded spectra are in remarkable agreement with simulations based on the LL equation of motion with moderate quantum corrections for recoil and, in the case of electrons in axially aligned crystals, spin and reduced radiation intensity.  more » « less
Award ID(s):
2012549
PAR ID:
10347071
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
New Journal of Physics
Volume:
23
Issue:
8
ISSN:
1367-2630
Page Range / eLocation ID:
085001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electron diffusion by whistler‐mode chorus waves is one of the key processes controlling the dynamics of relativistic electron fluxes in the Earth's radiation belts. It is responsible for the acceleration of sub‐relativistic electrons injected from the plasma sheet to relativistic energies as well as for their precipitation and loss into the atmosphere. Based on analytical estimates of chorus wave‐driven quasi‐linear electron energy and pitch‐angle diffusion rates, we provide analytical steady‐state solutions to the corresponding Fokker‐Planck equation for the relativistic electron distribution and flux. The impact on these steady‐state solutions of additional electromagnetic ion cyclotron waves, and of ultralow frequency waves are examined. Such steady‐state solutions correspond to hard energy spectra at 1–4 MeV, dangerous for satellite electronics, and represent attractors for the system dynamics in the presence of sufficiently strong driving by continuous injections of 10–300 keV electrons. Therefore, these analytical steady‐state solutions provide a simple means for estimating the most extreme electron energy spectra potentially encountered in the outer radiation belt, despite the great variability of injections and plasma conditions. These analytical steady‐state solutions are compared with numerical simulations based on the full Fokker‐Planck equation and with relativistic electron flux spectra measured by satellites during one extreme event and three strong events of high time‐integrated geomagnetic activity, demonstrating a good agreement. 
    more » « less
  2. Abstract Energetic electron losses by pitch‐angle scattering and precipitation to the atmosphere from the radiation belts are controlled, to a great extent, by resonant wave particle interactions with whistler‐mode waves. The efficacy of such precipitation is primarily modulated by wave intensity, although its relative importance, compared to other wave and plasma parameters, remains unclear. Precipitation spectra from the low‐altitude, polar‐orbiting ELFIN mission have previously been demonstrated to be consistent with energetic precipitation modeling derived from empirical models of field‐aligned wave power across a wide swath of local‐time sectors. However, such modeling could not explain the intense, relativistic electron precipitation observed on the nightside. Therefore, this study aims to additionally consider the contributions of three modifications—wave obliquity, frequency spectrum, and local plasma density—to explain this discrepancy on the nightside. By incorporating these effects into both test particle simulations and quasi‐linear diffusion modeling, we find that realistic implementations of each individual modification result in only slight changes to the electron precipitation spectrum. However, these modifications, when combined, enable more accurate modeling of ELFIN‐observed spectra. In particular, a significant reduction in plasma density enables lower frequency waves, oblique, or even quasi field‐aligned waves to resonate with near ∼1 MeV electrons closer to the equator. We demonstrate that the levels of modification required to accurately reproduce the nightside spectra of whistler‐mode wave‐driven relativistic electron precipitation match empirical expectations and should therefore be included in future radiation belt modeling. 
    more » « less
  3. Abstract The electron VDF in the solar wind consists of a Maxwellian core, a suprathermal halo, a field-aligned component strahl, and an energetic superhalo that deviates from the equilibrium. Whistler wave turbulence is thought to resonantly scatter the observed electron velocity distribution. Wave–particle interactions that contribute to Whistler wave turbulence are introduced into a Fokker–Planck kinetic transport equation that describes the interaction between the suprathermal electrons and the Whistler waves. A recent numerical approach for solving the Fokker–Planck kinetic transport equation has been extended to include a full diffusion tensor. Application of the extended numerical approach to the transport of solar wind suprathermal electrons influenced by Whistler wave turbulence is presented. Comparison and analysis of the numerical results with observations and diagonal-only model results are made. The off-diagonal terms in the diffusion tensor act to depress effects caused by the diagonal terms. The role of the diffusion coefficient on the electron heat flux is discussed. 
    more » « less
  4. This work compares several versions of the equations of motion for a test particle encountering cyclotron resonance with a single, field-aligned whistler mode wave. The gyro-averaged Lorentz equation produces both widespread phase trapping (PT) and “positive phase bunching” of low pitch angle electrons by large amplitude waves. Approximations allow a Hamiltonian description to be reduced to a single pair of conjugate variables, which can account for PT as well as phase bunching at moderate pitch angle, and has recently been used to investigate this unexpected bahavior at low pitch angle. Here, numerical simulations using the Lorentz equation and several versions of Hamiltonian-based equations of motion are compared. Similar behavior at low pitch angle is found in each case. 
    more » « less
  5. null (Ed.)
    Magnetochiral dichroism (MChD), a fascinating manifestation of the light-matter interaction characteristic for chiral systems under magnetic fields, has become a well-established optical phenomenon reported for many different materials. However, its interpretation remains essentially phenomenological and qualitative, because the existing microscopic theory has not been quantitatively confirmed by confronting calculations based on this theory with experimental data. Here, we report the experimental low-temperature MChD spectra of two archetypal chiral paramagnetic crystals taken as model systems, tris(1,2-diaminoethane)nickel(II) and cobalt(II) nitrate, for light propagating parallel or perpendicular to the c axis of the crystals, and the calculation of the MChD spectra for the Ni(II) derivative by state-of-the-art quantum chemical calculations. By incorporating vibronic coupling, we find good agreement between experiment and theory, which opens the way for MChD to develop into a powerful chiral spectroscopic tool and provide fundamental insights for the chemical design of new magnetochiral materials for technological applications. 
    more » « less