Bistable shallow arches are ubiquitous in many engineering systems ranging from compliant mechanisms and biomedical stents to energy harvesters and passive fluidic controllers. In all these scenarios, the bistable states of the arch and the sudden transitions between them via snap-through instability are harnessed. However, bistable arches have been traditionally studied and characterized by triggering snap-through instability using quasi-static forces. Here, we analytically examine the effect of oscillatory loads on bistable arches and investigate the dynamic behaviors ranging from intrawell motion to periodic and chaotic interwell motion. The linear and nonlinear dynamic responses of both elastically and plastically deformed shallow arches are presented. Introducing an energy potential criterion, we classify the structure’s behavior within the parameter space. This energy-based approach allows us to explore the parameter space for high-dimensional models of the arch by varying the force amplitude and excitation frequency. Bifurcation diagrams, Lyapunov exponents, and maximum critical energy plots are presented to characterize the dynamic response of the system. Our results reveal that unstable solutions admitted through higher modes govern the critical energy required for interwell motion. This study investigates the rich nonlinear dynamic behavior of the arch element and it introduces an energy potential criterion that can scale easily to classify motion of arrays of bistable arches for future developments of multistable mechanical metamaterials. 
                        more » 
                        « less   
                    This content will become publicly available on February 27, 2026
                            
                            Strong nonreciprocity in a bistable pendulum with contactless coupling to a monostable pendulum
                        
                    
    
            Abstract This article studies the nonreciprocity of a system that consists of a bistable element coupled to a monostable element through a contactless magnetic interaction. To illustrate the concept, the bistable element is physically realized using a pendulum that interacts with a stationary magnet and the monostable element is a classical pendulum. A numerical model is implemented to simulate the nonlinear dynamics of the system. Both simulations and experiments show that the system exhibits a strong amplitude-dependent nonreciprocity in response to initial excitations. At small input amplitudes, the system has an intrawell response with minimal transmission of energy whether the excitation is exerted on the side of the bistable pendulum or on the other side. However, at high input amplitude, a strong nonreciprocal behavior is observed: excitation of the bistable pendulum causes an interwell response which considerably reduces the distance between the two pendulums and allows energy to be efficiently transmitted through the contactless magnetic interaction; excitation of the monostable pendulum does not cause any interwell response and results in limited energy transmission. The combination of bistability and contactless nonlinear interactions allows the system to exhibit very strong amplitude-dependent nonreciprocity, which may be useful in a wide range of applications. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2423960
- PAR ID:
- 10579443
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Nonlinear Dynamics
- ISSN:
- 0924-090X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The inerter pendulum vibration absorber is connected with a power take-off mechanism (called IPVA-PTO) to study its wave energy conversion potential. The resulting IPVA-PTO system is integrated between a spar and a floater (torus) using a ballscrew mechanism. The hydrodynamic stiffness, added mass and radiation damping effects on the spar-floater system are characterized using boundary element method via Ansys Aqwa. It has been observed that a 1:2 internal resonance between the spar-floater system and the pendulum is responsible for nonlinear energy transfer between the two systems. This nonlinear energy transfer occurs when the primary harmonic solution of the system becomes unstable, and a secondary solution emerges in the system characterized by harmonics of frequency half the excitation frequency. As a result of this energy transfer, the vibration of the spar-floater system is suppressed, and the energy is transferred to the pendulum. The focus of this paper is to analyze this 1:2 internal resonance phenomenon near the resonant frequency of the spar. The IPVA-PTO system, when integrated with the spar-floater system, is compared to a linear coupling between the spar and the floater in terms of the response amplitude operator (RAO) of the spar and the energy conversion capability defined by the capture width of the energy converter.more » « less
- 
            A nonlinear inerter pendulum vibration absorber is integrated with an electromagnetic power take-off system (called IPVA-PTO) and is analyzed for its efficacy in ocean wave energy conversion of a spar platform. The IPVA-PTO system shows a nonlinear energy transfer phenomenon between the spar and the IPVA-PTO which can be used to convert the vibration energy of the spar into electricity while reducing the hydrodynamic response of the spar. The hydrodynamic coefficients of the spar are computed using a commercial boundary-element-method (BEM) code. It is shown that the energy transfer is associated with 1:2 internal resonance of the pendulum vibration absorber, which is induced by a period-doubling bifurcation. The period-doubling bifurcation is studied using the harmonic balance method. A modified alternating frequency/time (AFT) approach is developed to compute the Jacobian matrix involving nonlinear inertial effects of the IPVA-PTO system. It is shown that the period doubling bifurcation leads to 1:2 internal resonance and plays a major role in the energy transfer between the spar and the pendulum. The response amplitude operator (RAO) in heave and the capture width of the IPVA-PTO-integrated spar are compared with its linear counterpart and it is shown that the IPVA-PTO system outperforms the linear energy harvester as the former has a lower RAO and higher capture width.more » « less
- 
            Abstract The inerter pendulum vibration absorber (IPVA) is integrated between a spar and an annulus floater using a ball-screw mechanism to study its wave energy conversion potential. Hydrodynamic stiffness, added mass, and radiation damping effects on the spar-floater system are characterized using the boundary element method. It is found that a 1:2 internal resonance via a period-doubling bifurcation in the system is responsible for nonlinear energy transfer between the spar-floater system and the pendulum vibration absorber. This nonlinear energy transfer occurs when the primary harmonic solution of the system becomes unstable due to the 1:2 internal resonance phenomenon. The focus of this paper is to analyze this 1:2 internal resonance phenomenon near the first natural frequency of the system. The IPVA system when integrated with the spar-floater system is shown to outperform a linear coupling between the spar and the floater both in terms of the response amplitude operator (RAO) of the spar and one measure of the energy conversion potential of the system. Finally, experiments are performed on the IPVA system integrated with single-degree-of-freedom system (without any hydrodynamic effects) to observe the 1:2 internal resonance phenomenon and the nonlinear energy transfer between the primary mass and the pendulum vibration absorber. It is shown experimentally that the IPVA system outperforms a linear benchmark in terms of vibration suppression due to the energy transfer phenomenon.more » « less
- 
            Centrifugal pendulum vibration absorbers (CPVAs) are essentially collections of pendulums attached to a rotor or rotating component or components within a mechanical system for the purpose of mitigating the typical torsional surging that is inherent to internal combustion engines and electric motors. The dynamic stability and performance of CPVAs are highly dependent on the motion path defined for their pendulous masses. Assemblies of absorbers are tuned by adjusting these paths such that the pendulums respond to problematic orders (multiples of average rotation speed) in a way that smooths the rotational accelerations arising from combustion or other non-uniform rotational acceleration events. For most motion paths, pendulum tuning indeed shifts as a function of the pendulum response amplitude. For a given motion path, the tuning shift that occurs as pendulum amplitude varies produces potentially undesirable dynamic instabilities. Large amplitude pendulum motion that mitigates a high percentage of torsional oscillation while avoiding instabilities brought on by tuning shift introduces complexity and hazards into CPVA design processes. Therefore, identifying pendulum paths whose tuning order does not shift as the pendulum amplitude varies, so-called tautochronic paths, may greatly simplify engineering design processes for generating high-performing CPVAs. This paper expands on the work of Sabatini, in which a mathematical condition for tautochronicity is identified for a class of differential equations that includes those that arise in the modeling of the motion of a pendulum in a centrifugal field. The approach is based on a transformation from the physical coordinate to a standard Hamiltonian system. We show that transforming a nonlinear oscillator made tautochronic through path modification actually transforms the nonlinear oscillator into a simple harmonic oscillator. To illustrate the new approach and results, the technique is applied to the simplified problem of determining the cut-out shape that produces tautochronic motion for a mass sliding in the cut-out of a larger mass that is free to translate horizontally without friction. In the simplified problem, centrifugal acceleration is replaced by constant gravitational acceleration and rotation of the rotor inertia is replaced by the translation of the large base mass.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
