The f-block ab initio correlation consistent composite approach was used to predict the dissociation energies of lanthanide sulfides and selenides. Geometry optimizations were carried out using density functional theory and coupled cluster singles, doubles, and perturbative triples with one- and two-component Hamiltonians. For the two-component calculations, relativistic effects were accounted for by utilizing a third-order Douglas–Kroll–Hess Hamiltonian. Spin–orbit coupling was addressed with the Breit–Pauli Hamiltonian within a multireference configuration interaction approach. The state averaged complete active space self-consistent field wavefunctions obtained for the spin–orbit coupling energies were used to assign the ground states of diatomics, and several diagnostics were used to ascertain the multireference character of the molecules. 
                        more » 
                        « less   
                    This content will become publicly available on March 14, 2026
                            
                            Revealing correlation mechanisms through nonorthogonal multiconfiguration self-consistent field calculations
                        
                    
    
            The presence of spin and spatial symmetry breaking upon variational optimization of mean-field wavefunctions is known to be an indicator of nondynamical electron correlation. However, a single mean-field wavefunction may not have sufficient flexibility to flag the correlated orbital space where there are multiple correlation mechanisms present. In such situations, there are multiple nearly degenerate self-consistent field solutions that describe different correlation mechanisms, but it is often not possible to know a priori when such situations will occur or if sufficient solutions have been obtained. In this work, we examine the role of spin and spatial symmetries of nonorthogonal multiconfigurational self-consistent field (NOMCSCF) calculations in revealing correlation mechanisms. We provide details of the theory for optimization of NOMCSCF wavefunctions with desired symmetries, establish which types of symmetries recover the most correlation energy when the symmetry constraints are relaxed, and discuss how the different-orbitals for different-configuration wavefunctions reveal the different correlation mechanisms present. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2144905
- PAR ID:
- 10579594
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 162
- Issue:
- 10
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The theory of mean field games is a tool to understand noncooperative dynamic stochastic games with a large number of players. Much of the theory has evolved under conditions ensuring uniqueness of the mean field game Nash equilibrium. However, in some situations, typically involving symmetry breaking, non-uniqueness of solutions is an essential feature. To investigate the nature of non-unique solutions, this paper focuses on the technically simple setting where players have one of two states, with continuous time dynamics, and the game is symmetric in the players, and players are restricted to using Markov strategies. All the mean field game Nash equilibria are identified for a symmetric follow the crowd game. Such equilibria correspond to symmetric $$\epsilon$$-Nash Markov equilibria for $$N$$ players with $$\epsilon$$ converging to zero as $$N$$ goes to infinity. In contrast to the mean field game, there is a unique Nash equilibrium for finite $N.$ It is shown that fluid limits arising from the Nash equilibria for finite $$N$$ as $$N$$ goes to infinity are mean field game Nash equilibria, and evidence is given supporting the conjecture that such limits, among all mean field game Nash equilibria, are the ones that are stable fixed points of the mean field best response mapping.more » « less
- 
            Crystallographic Spin Torque Conductivity Tensor of Epitaxial IrO 2 Thin Films for Oxide SpintronicsAbstract Unconventional spin‐orbit torques arising from electric‐field‐generated spin currents in anisotropic materials have promising potential for spintronic applications, including for perpendicular magnetic switching in high‐density memory applications. Here, all the independent elements of the spin torque conductivity tensor allowed by bulk crystal symmetries for the tetragonal conductor IrO2are determined via measurements of conventional (in‐plane) anti‐damping torques for IrO2thin films in the high‐symmetry (001) and (100) orientations. It is then tested whether rotational transformations of this same tensor can predict both the conventional and unconventional anti‐damping torques for IrO2thin films in the lower‐symmetry (101), (110), and (111) orientations, finding good agreement. The results confirm that spin‐orbit torques from all these orientations are consistent with the bulk symmetries of IrO2, and show how simple measurements of conventional torques from high‐symmetry orientations of anisotropic thin films can provide an accurate prediction of the unconventional torques from lower‐symmetry orientations.more » « less
- 
            The Ginzburg-Landau (GL) theory is very successful in describing the pairing symmetry, a fundamental characterization of the broken symmetries in a paired superfluid or superconductor. However, GL theory does not describe fermionic excitations such as Bogoliubov quasiparticles or Andreev bound states that are directly related to topological properties of the superconductor. In this work, we show that the symmetries of the fermionic excitations are captured by a Projective Symmetry Group (PSG), which is a group extension of the bosonic symmetry group in the superconducting state. We further establish a correspondence between the pairing symmetry and the fermion PSG. When the normal and superconducting states share the same spin rotational symmetry, there is a simpler correspondence between the pairing symmetry and the fermion PSG, which we enumerate for all 32 crystalline point groups. We also discuss the general framework for computing PSGs when the spin rotational symmetry is spontaneously broken in the superconducting state. This PSG formalism leads to experimental consequences, and as an example, we show how a given pairing symmetry dictates the classification of topological superconductivity.more » « less
- 
            The Stoner instability remains a cornerstone for understanding metallic ferromagnets. This instability captures the interplay of Coulomb repulsion, Pauli exclusion, and twofold fermionic spin degeneracy. In materials with spin–orbit coupling, this fermionic spin is generalized to a twofold degenerate pseudospin which is typically believed to have symmetry properties as spin. Here, we identify a distinct symmetry of this pseudospin that forbids it to couple to a Zeeman field. This “spinless” property is required to exist in five nonsymmorphic space groups and has nontrivial implications for superconductivity and magnetism. With Coulomb repulsion, Fermi surfaces composed primarily of this spinless pseudospin property give rise to Stoner instabilities into magnetic states that are qualitatively different than ferromagnets. These spinless-pseudospin ferromagnets break time-reversal symmetry, have a vanishing magnetization, are noncollinear, and exhibit momentum-dependent energy band spin-splittings. In superconductors, for all pairing symmetries and field orientations, this spinless pseudospin extinguishes paramagnetic limiting. We discuss applications to superconducting UCoGe and magnetic NiS_2-xSexmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
