skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transversality of holomorphic maps into hyperquadrics
Abstract We study holomorphic mapsFfrom a smooth Levi non-degenerate real hypersurface$$ M_{\ell }\subset {\mathbb {C}}^n $$ M C n into a hyperquadric$$ {\mathbb {H}}_{\ell '}^N $$ H N with signatures$$ \ell \le (n-1)/2 $$ ( n - 1 ) / 2 and$$ \ell '\le (N-1)/2,$$ ( N - 1 ) / 2 , respectively. Assuming that$$ N - n < n - 1,$$ N - n < n - 1 , we prove that if$$ \ell = \ell ',$$ = , thenFis either CR transversal to$$ {\mathbb {H}}_{\ell }^N $$ H N at every point of$$ M_{\ell },$$ M , or it maps a neighborhood of$$ M_{\ell } $$ M in$$ {\mathbb {C}}^n $$ C n into$$ {\mathbb {H}}_{\ell }^N.$$ H N . Furthermore, in the case where$$ \ell ' > \ell ,$$ > , we show that ifFis not CR transversal at$$0\in M_\ell ,$$ 0 M , then it must be transversally flat. The latter is best possible.  more » « less
Award ID(s):
2247151
PAR ID:
10579620
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Mathematische Annalen
Volume:
392
Issue:
2
ISSN:
0025-5831
Format(s):
Medium: X Size: p. 1731-1746
Size(s):
p. 1731-1746
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract LetXbe a compact normal complex space of dimensionnandLbe a holomorphic line bundle onX. Suppose that$$\Sigma =(\Sigma _1,\ldots ,\Sigma _\ell )$$ Σ = ( Σ 1 , , Σ ) is an$$\ell $$ -tuple of distinct irreducible proper analytic subsets ofX,$$\tau =(\tau _1,\ldots ,\tau _\ell )$$ τ = ( τ 1 , , τ ) is an$$\ell $$ -tuple of positive real numbers, and let$$H^0_0(X,L^p)$$ H 0 0 ( X , L p ) be the space of holomorphic sections of$$L^p:=L^{\otimes p}$$ L p : = L p that vanish to order at least$$\tau _jp$$ τ j p along$$\Sigma _j$$ Σ j ,$$1\le j\le \ell $$ 1 j . If$$Y\subset X$$ Y X is an irreducible analytic subset of dimensionm, we consider the space$$H^0_0 (X|Y, L^p)$$ H 0 0 ( X | Y , L p ) of holomorphic sections of$$L^p|_Y$$ L p | Y that extend to global holomorphic sections in$$H^0_0(X,L^p)$$ H 0 0 ( X , L p ) . Assuming that the triplet$$(L,\Sigma ,\tau )$$ ( L , Σ , τ ) is big in the sense that$$\dim H^0_0(X,L^p)\sim p^n$$ dim H 0 0 ( X , L p ) p n , we give a general condition onYto ensure that$$\dim H^0_0(X|Y,L^p)\sim p^m$$ dim H 0 0 ( X | Y , L p ) p m . WhenLis endowed with a continuous Hermitian metric, we show that the Fubini-Study currents of the spaces$$H^0_0(X|Y,L^p)$$ H 0 0 ( X | Y , L p ) converge to a certain equilibrium current onY. We apply this to the study of the equidistribution of zeros inYof random holomorphic sections in$$H^0_0(X|Y,L^p)$$ H 0 0 ( X | Y , L p ) as$$p\rightarrow \infty $$ p
    more » « less
  2. Abstract The double differential cross sections of the Drell–Yan lepton pair ($$\ell ^+\ell ^-$$ + - , dielectron or dimuon) production are measured as functions of the invariant mass$$m_{\ell \ell }$$ m , transverse momentum$$p_{\textrm{T}} (\ell \ell )$$ p T ( ) , and$$\varphi ^{*}_{\eta }$$ φ η . The$$\varphi ^{*}_{\eta }$$ φ η observable, derived from angular measurements of the leptons and highly correlated with$$p_{\textrm{T}} (\ell \ell )$$ p T ( ) , is used to probe the low-$$p_{\textrm{T}} (\ell \ell )$$ p T ( ) region in a complementary way. Dilepton masses up to 1$$\,\text {Te\hspace{-.08em}V}$$ Te V are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various$$m_{\ell \ell }$$ m ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3$$\,\text {fb}^{-1}$$ fb - 1 of proton–proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13$$\,\text {Te\hspace{-.08em}V}$$ Te V . Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation. 
    more » « less
  3. Abstract Let$$\mathbb {F}_q^d$$ F q d be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ E F q d and a fixed nonzero$$t\in \mathbb {F}_q$$ t F q , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ H t ( E ) = { h y : y E } , where$$h_y:E\rightarrow \{0,1\}$$ h y : E { 0 , 1 } is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ { x E : x · y = t } . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ d = 3 that if$$|E|\ge Cq^{\frac{11}{4}}$$ | E | C q 11 4 andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ H t ( E ) isdwhenever$$E\subseteq \mathbb {F}_q^d$$ E F q d with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ | E | C d q d - 1 d - 1
    more » « less
  4. Abstract Consider two half-spaces$$H_1^+$$ H 1 + and$$H_2^+$$ H 2 + in$${\mathbb {R}}^{d+1}$$ R d + 1 whose bounding hyperplanes$$H_1$$ H 1 and$$H_2$$ H 2 are orthogonal and pass through the origin. The intersection$${\mathbb {S}}_{2,+}^d:={\mathbb {S}}^d\cap H_1^+\cap H_2^+$$ S 2 , + d : = S d H 1 + H 2 + is a spherical convex subset of thed-dimensional unit sphere$${\mathbb {S}}^d$$ S d , which contains a great subsphere of dimension$$d-2$$ d - 2 and is called a spherical wedge. Choosenindependent random points uniformly at random on$${\mathbb {S}}_{2,+}^d$$ S 2 , + d and consider the expected facet number of the spherical convex hull of these points. It is shown that, up to terms of lower order, this expectation grows like a constant multiple of$$\log n$$ log n . A similar behaviour is obtained for the expected facet number of a homogeneous Poisson point process on$${\mathbb {S}}_{2,+}^d$$ S 2 , + d . The result is compared to the corresponding behaviour of classical Euclidean random polytopes and of spherical random polytopes on a half-sphere. 
    more » « less
  5. Abstract Given a prime powerqand$$n \gg 1$$ n 1 , we prove that every integer in a large subinterval of the Hasse–Weil interval$$[(\sqrt{q}-1)^{2n},(\sqrt{q}+1)^{2n}]$$ [ ( q - 1 ) 2 n , ( q + 1 ) 2 n ] is$$\#A({\mathbb {F}}_q)$$ # A ( F q ) for some ordinary geometrically simple principally polarized abelian varietyAof dimensionnover$${\mathbb {F}}_q$$ F q . As a consequence, we generalize a result of Howe and Kedlaya for$${\mathbb {F}}_2$$ F 2 to show that for each prime powerq, every sufficiently large positive integer is realizable, i.e.,$$\#A({\mathbb {F}}_q)$$ # A ( F q ) for some abelian varietyAover$${\mathbb {F}}_q$$ F q . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse–Weil interval. A separate argument determines, for fixedn, the largest subinterval of the Hasse–Weil interval consisting of realizable integers, asymptotically as$$q \rightarrow \infty $$ q ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if$$q \le 5$$ q 5 , then every positive integer is realizable, and for arbitraryq, every positive integer$$\ge q^{3 \sqrt{q} \log q}$$ q 3 q log q is realizable. 
    more » « less