skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Humpback whale song vocalization behavior and temporo-spatial distributions in the Norwegian and Barents Sea observed with a coherent hydrophone array
The vocalization behavior of humpback whales in the Norwegian and Barents Seas is examined based on recordings of a large-aperture, densely-populated coherent hydrophone array system. The passive ocean acoustic waveguide remote sensing (POAWRS) technique is employed to provide detection, bearing-time estimation, time-frequency characterization and classification of the humpback whale vocalizations. The song vocalizations, composed of highly structured and repeatable set of phrases, were detected throughout the diel cycle between February 18 to March 8, 2014. The beamformed spectrograms of the detected humpback vocalizations are classified as song sequences based on inter-pulse intervals and time-frequency characteristics, verified by visual inspection. The song structure is compared for humpback whale vocalizations recorded at three distinct regions off the Norwegian coast, Alesund, Lofoten and Northern Finmark. Multiple bearing-time trajectories for humpback songs were simultaneously observed indicating multiple singers present at each measurement site. Humpback whale received call rates and temporo-spatial distributions are compared across the three measurement sites. Geographic mapping of humpback whale calls from their bearing-time trajectories is accomplished via the moving array triangulation technique.  more » « less
Award ID(s):
2345791
PAR ID:
10579640
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
The Journal of the Acoustical Society of America
Date Published:
Journal Name:
The Journal of the Acoustical Society of America
Volume:
155
Issue:
3_Supplement
ISSN:
0001-4966
Page Range / eLocation ID:
A185 to A185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Humpback whale behavior, population distribution and structure can be inferred from long term underwater passive acoustic monitoring of their vocalizations. Here we develop automatic approaches for classifying humpback whale vocalizations into the two categories of song and non-song, employing machine learning techniques. The vocalization behavior of humpback whales was monitored over instantaneous vast areas of the Gulf of Maine using a large aperture coherent hydrophone array system via the passive ocean acoustic waveguide remote sensing technique over multiple diel cycles in Fall 2006. We use wavelet signal denoising and coherent array processing to enhance the signal-to-noise ratio. To build features vector for every time sequence of the beamformed signals, we employ Bag of Words approach to time-frequency features. Finally, we apply Support Vector Machine (SVM), Neural Networks, and Naive Bayes to classify the acoustic data and compare their performances. Best results are obtained using Mel Frequency Cepstrum Coefficient (MFCC) features and SVM which leads to 94% accuracy and 72.73% F1-score for humpback whale song versus non-song vocalization classification, showing effectiveness of the proposed approach for real-time classification at sea. 
    more » « less
  2. Humpback whale breathing-related sounds were recorded on elements of a coherent hydrophone array subaperture deployed vertically at the Great South Channel on the US Northeastern continental shelf in Fall 2021, where half of the hydrophones were in-air and the rest submerged underwater. In-air hydrophones recorded breathing sounds with approximately 2.5 s duration, but smaller bandwidths compared to underwater hydrophones where signal energies extended beyond 50 kHz, and a mean underwater source level of 161 ± 4 dB re 1 μPa at 1 m, based on measurements at 22.9 m. The underwater recorded humpback whale breathing sound spectra displayed a broadband dip centered at 15.7 kHz, with approximately 400 Hz half-power bandwidth, likely caused by attenuation from propagation through pulsating air bubbles. The air bubble radius for natural frequency of oscillations at 15.7 kHz is estimated to be 0.205–0.21 mm. These bubbles are capable of removing energy from the forward propagated humpback breathing sounds via resonance absorption most pronounced at and near bubble natural oscillation frequency. Humpback whale distances from the vertically deployed hydrophones are estimated and tracked by matching the curved nonlinear travel-time wavefront of its breathing sounds, since the whale was in the near-field of the subarray. 
    more » « less
  3. Humpback whale song is a culturally transmitted behavior. Human language, which is also culturally transmitted, has statistically coherent parts whose frequency distribution follows a power law. These properties facilitate learning and may therefore arise because of their contribution to the faithful transmission of language over multiple cultural generations. If so, we would expect to find them in other culturally transmitted systems. In this study, we applied methods based on infant speech segmentation to 8 years of humpback recordings, uncovering in whale song the same statistical structure that is a hallmark of human language. This commonality, in two evolutionarily distant species, points to the role of learning and cultural transmission in the emergence of properties thought to be unique to human language. 
    more » « less
  4. The 2019 ENRICH Voyage (Euphausiids and Nutrient Recycling in Cetacean Hotspots), was conducted from 19 January – 5 March 2019, aboard the RV Investigator. The voyage departed from and returned to Hobart, Tasma-nia, Australia, and conducted most marine science operations in the area between 60°S – 67°S and 138°E – 152°E. As part of the multidisciplinary research programme, a passive acoustic survey for marine mammals was undertaken for the duration of the voyage, with the main goal to monitor for and locate groups of calling Antarctic blue whales (Balaenoptera musculus intermedia). Directional sonobuoys were used at 295 listening stations, which resulted in 828 hours of acoustic recordings. Monitoring also took place for pygmy blue, (B. m. brevicauda), fin, (B. physalus), sperm (Physeter macrocephalus), humpback (Megaptera novaeangliae), sei (B. borealis), and Antarctic minke whales (B. bonarensis); for leopard (Hydrurga leptonyx), crabeater (Lobodon carcinophaga), Ross (Ommatophoca rossii), and Weddell seals (Leptonychotes weddellii), and for odontocete (low frequency whistles) vocalisations during each listening station. Calibrated measurements of the bearing and intensity of the majority of calls from blue and fin whales were obtained in real time. 33,435 calls from Antarctic blue whales were detected at 238 listening stations throughout the voyage, most of them south of 60°S. Southeast Indian Ocean blue whale song was detected primarily between 47° and 55°S while the southwest Pacific blue whale song was recorded between 44° and 48°S. Most baleen whale and seal calls were detected along the continental shelf break in the study region but some were also detected in deeper waters. Marine mammal calls were uncommon on the shelf, which did not have any ice cover during the survey. Calling Antarctic blue whales were tracked and located on multiple occasions to enable closer study of their fine-scale movements and calling behaviour as well as enabling collection of photo ID, behavioural, and photogrammetry data. The passive acoustic data collected during this voyage will allow investigation of the distribution of Antarctic blue whales in relation to environmental correlates measured during ENRICH, with a focus on blue whale prey. 
    more » « less
  5. Rendezvous with sperm whales for biological observations is made challenging by their prolonged dive patterns. Here, we propose an algorithmic framework that codevelops multiagent reinforcement learning–based routing (autonomy module) and synthetic aperture radar–based very high frequency (VHF) signal–based bearing estimation (sensing module) for maximizing rendezvous opportunities of autonomous robots with sperm whales. The sensing module is compatible with low-energy VHF tags commonly used for tracking wildlife. The autonomy module leverages in situ noisy bearing measurements of whale vocalizations, VHF tags, and whale dive behaviors to enable time-critical rendezvous of a robot team with multiple whales in simulation. We conducted experiments at sea in the native habitat of sperm whales using an “engineered whale”—a speedboat equipped with a VHF-emitting tag, emulating five distinct whale tracks, with different whale motions. The sensing module shows a median bearing error of 10.55° to the tag. Using bearing measurements to the engineered whale from an acoustic sensor and our sensing module, our autonomy module gives an aggregate rendezvous success rate of 81.31% for a 500-meter rendezvous distance using three robots in postprocessing. A second class of fielded experiments that used acoustic-only bearing measurements to three untagged sperm whales showed an aggregate rendezvous success rate of 68.68% for a 1000-meter rendezvous distance using two robots in postprocessing. We further validated these algorithms with several ablation studies using a sperm whale visual encounter dataset collected by marine biologists. 
    more » « less