The source levels, SL, of Antarctic blue and fin whale calls were estimated using acoustic recordings collected from directional sonobuoys deployed during an Antarctic voyage in 2019. Antarctic blue whale call types included stereotyped song and downswept frequency-modulated calls, often, respectively, referred to as Z-calls (comprising song units-A, B, and C) and D-calls. Fin whale calls included 20 Hz pulses and 40 Hz downswept calls. Source levels were obtained by measuring received levels (RL) and modelling transmission losses (TL) for each detection. Estimates of SL were sensitive to the parameters used in TL models, particularly the seafloor geoacoustic properties and depth of the calling whale. For our best estimate of TL and whale-depth, mean SL in dB re 1 μPa ± 1 standard deviation ranged between 188–191 ± 6–8 dB for blue whale call types and 189–192 ± 6 dB for fin whale call types. These estimates of SL are the first from the Southern Hemisphere for D-calls and 40 Hz downsweeps, and the largest sample size to-date for Antarctic blue whale song. Knowledge of source levels is essential for estimating the detection range and communication space of these calls and will enable more accurate comparisons of detections of these sounds from sonobuoy surveys and across international long-term monitoring networks. 
                        more » 
                        « less   
                    
                            
                            A passive acoustic survey for marine mammals conducted during the 2019 Antarctic voyage on Euphausiids and Nutrient Recycling in Cetacean Hotspots (ENRICH)
                        
                    
    
            The 2019 ENRICH Voyage (Euphausiids and Nutrient Recycling in Cetacean Hotspots), was conducted from 19 January – 5 March 2019, aboard the RV Investigator. The voyage departed from and returned to Hobart, Tasma-nia, Australia, and conducted most marine science operations in the area between 60°S – 67°S and 138°E – 152°E. As part of the multidisciplinary research programme, a passive acoustic survey for marine mammals was undertaken for the duration of the voyage, with the main goal to monitor for and locate groups of calling Antarctic blue whales (Balaenoptera musculus intermedia). Directional sonobuoys were used at 295 listening stations, which resulted in 828 hours of acoustic recordings. Monitoring also took place for pygmy blue, (B. m. brevicauda), fin, (B. physalus), sperm (Physeter macrocephalus), humpback (Megaptera novaeangliae), sei (B. borealis), and Antarctic minke whales (B. bonarensis); for leopard (Hydrurga leptonyx), crabeater (Lobodon carcinophaga), Ross (Ommatophoca rossii), and Weddell seals (Leptonychotes weddellii), and for odontocete (low frequency whistles) vocalisations during each listening station. Calibrated measurements of the bearing and intensity of the majority of calls from blue and fin whales were obtained in real time. 33,435 calls from Antarctic blue whales were detected at 238 listening stations throughout the voyage, most of them south of 60°S. Southeast Indian Ocean blue whale song was detected primarily between 47° and 55°S while the southwest Pacific blue whale song was recorded between 44° and 48°S. Most baleen whale and seal calls were detected along the continental shelf break in the study region but some were also detected in deeper waters. Marine mammal calls were uncommon on the shelf, which did not have any ice cover during the survey. Calling Antarctic blue whales were tracked and located on multiple occasions to enable closer study of their fine-scale movements and calling behaviour as well as enabling collection of photo ID, behavioural, and photogrammetry data. The passive acoustic data collected during this voyage will allow investigation of the distribution of Antarctic blue whales in relation to environmental correlates measured during ENRICH, with a focus on blue whale prey. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1745930
- PAR ID:
- 10134677
- Date Published:
- Journal Name:
- Proceedings of ACOUSTICS 2019
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Quantifying how animals respond to disturbance events bears relevance for understanding consequences to population health. We investigate whether blue whales respond acoustically to naturally occurring episodic noise by examining calling before and after earthquakes (27 040 calls, 32 earthquakes; 27 January–29 June 2016). Two vocalization types were evaluated: New Zealand blue whale song and downswept vocalizations ('D calls'). Blue whales did not alter the number of D calls, D call received level or song intensity following earthquakes (paired t -tests, p > 0.7 for all). Linear models accounting for earthquake strength and proximity revealed significant relationships between change in calling activity surrounding earthquakes and prior calling activity (D calls: R 2 = 0.277, p < 0.0001; song: R 2 = 0.080, p = 0.028); however, these same relationships were true for ‘null’ periods without earthquakes (D calls: R 2 = 0.262, p < 0.0001; song: R 2 = 0.149, p = 0.0002), indicating that the pattern is driven by blue whale calling context regardless of earthquake presence. Our findings that blue whales do not respond to episodic natural noise provide context for interpreting documented acoustic responses to anthropogenic noise sources, including shipping traffic and petroleum development, indicating that they potentially evolved tolerance for natural noise sources but not novel noise from anthropogenic origins.more » « less
- 
            Halliday, William David (Ed.)Among tremendous biodiversity within the California Current Ecosystem (CCE) are gigantic mysticetes (baleen whales) that produce structured sequences of sound described as song. From six years of passive acoustic monitoring within the central CCE we measured seasonal and interannual variations in the occurrence of blue (Balaenoptera musculus), fin (Balaenoptera physalus), and humpback (Megaptera novaeangliae) whale song. Song detection during 11 months of the year defines its prevalence in this foraging habitat and its potential use in behavioral ecology research. Large interannual changes in song occurrence within and between species motivates examination of causality. Humpback whales uniquely exhibited continuous interannual increases, rising from 34% to 76% of days over six years, and we examine multiple hypotheses to explain this exceptional trend. Potential influences of physical factors on detectability – including masking and acoustic propagation – were not supported by analysis of wind data or modeling of acoustic transmission loss. Potential influences of changes in local population abundance, site fidelity, or migration timing were supported for two of the interannual increases in song detection, based on extensive local photo ID data (17,356 IDs of 2,407 individuals). Potential influences of changes in foraging ecology and efficiency were supported across all years by analyses of the abundance and composition of forage species. Following detrimental food web impacts of a major marine heatwave that peaked during the first year of the study, foraging conditions consistently improved for humpback whales in the context of their exceptional prey-switching capacity. Stable isotope data from humpback and blue whale biopsy samples are consistent with observed interannual variations in the regional abundance and composition of forage species. This study thus indicates that major interannual changes in detection of baleen whale song may reflect underlying variations in forage species availability driven by energetic variations in ecosystem state.more » « less
- 
            Abstract Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate‐driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata) and North Atlantic right whales (NARW;Eubalaena glacialis). This study assesses the acoustic presence of humpback (Megaptera novaeangliae), sei (B. borealis), fin (B. physalus), and blue whales (B. musculus) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom‐mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004–2010 and 2011–2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid‐Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.more » « less
- 
            The vocalization behavior of humpback whales in the Norwegian and Barents Seas is examined based on recordings of a large-aperture, densely-populated coherent hydrophone array system. The passive ocean acoustic waveguide remote sensing (POAWRS) technique is employed to provide detection, bearing-time estimation, time-frequency characterization and classification of the humpback whale vocalizations. The song vocalizations, composed of highly structured and repeatable set of phrases, were detected throughout the diel cycle between February 18 to March 8, 2014. The beamformed spectrograms of the detected humpback vocalizations are classified as song sequences based on inter-pulse intervals and time-frequency characteristics, verified by visual inspection. The song structure is compared for humpback whale vocalizations recorded at three distinct regions off the Norwegian coast, Alesund, Lofoten and Northern Finmark. Multiple bearing-time trajectories for humpback songs were simultaneously observed indicating multiple singers present at each measurement site. Humpback whale received call rates and temporo-spatial distributions are compared across the three measurement sites. Geographic mapping of humpback whale calls from their bearing-time trajectories is accomplished via the moving array triangulation technique.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    