skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global subterranean estuaries modify groundwater nutrient loading to the ocean
Abstract Terrestrial groundwater travels through subterranean estuaries before reaching the sea. Groundwater‐derived nutrients drive coastal water quality, primary production, and eutrophication. We determined how dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and dissolved organic nitrogen (DON) are transformed within subterranean estuaries and estimated submarine groundwater discharge (SGD) nutrient loads compiling > 10,000 groundwater samples from 216 sites worldwide. Nutrients exhibited complex, nonconservative behavior in subterranean estuaries. Fresh groundwater DIN and DIP are usually produced, and DON is consumed during transport. Median total SGD (saline and fresh) fluxes globally were 5.4, 2.6, and 0.18 Tmol yr−1for DIN, DON, and DIP, respectively. Despite large natural variability, total SGD fluxes likely exceed global riverine nutrient export. Fresh SGD is a small source of new nutrients, but saline SGD is an important source of mostly recycled nutrients. Nutrients exported via SGD via subterranean estuaries are critical to coastal biogeochemistry and a significant nutrient source to the oceans.  more » « less
Award ID(s):
1737258
PAR ID:
10579803
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Limnology and Oceanography Letters
Date Published:
Journal Name:
Limnology and Oceanography Letters
Volume:
9
Issue:
4
ISSN:
2378-2242
Page Range / eLocation ID:
411 to 422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Submarine groundwater discharge (SGD), comprising both nearshore and offshore components, plays a vital role in water cycling and solute transport in coastal areas, and affects coastal marine ecosystems. Previous estimations of SGD based on seepage meters, geochemical tracers, water balances, analytical, and numerical approaches frequently overlooked offshore contributions driven by oceanic currents, waves, and tides, resulting in an incomplete understanding of SGD dynamics and its ecological consequences. Therefore, this study quantified the total SGD by integrating offshore (current‐, wave‐, and tide‐driven SGD) and nearshore (fresh SGD and tide‐driven SGD) components in Florida coasts. The calculated total SGD was approximately 15.08% of annual precipitation volume in Florida, with 14.09% offshore SGD (0.7%, 8.2%, and 5.2% from currents, waves, and tides, respectively) and ∼0.986% nearshore SGD (0.44% and 0.55% from fresh and recirculated SGD), underscoring offshore SGD as a major driver of groundwater discharge extending across the continental shelf. Moreover, nearshore SGD‐derived dissolved inorganic nutrient fluxes were estimated as kg/yr for nitrogen and kg/yr for phosphorus, whereas offshore SGD‐derived nutrients were kg/yr for nitrogen and kg/yr for phosphorus. On average, these nutrient inputs were approximately 6 and 4 times greater than those from surface water nutrient fluxes from coastal river discharge for dissolved inorganic nitrogen and dissolved inorganic phosphorus, respectively, highlighting the significant role of SGD in nutrient cycling in Florida. Additionally, we identified 54 SGD hotspots, which are generally aligned spatially with the distribution of coastal springs. Therefore, future research should evaluate the impact on nutrient loads to enhance coastal water management and sustainability. 
    more » « less
  2. Abstract Sandy sediment beaches covering 70% of non‐ice‐covered coastlines are important ecosystems for nutrient cycling along the land‐ocean continuum. Subterranean estuaries (STEs), where groundwater and seawater meet, are hotspots for biogeochemical cycling within sandy beaches. The STE microbial community facilitates biogeochemical reactions, determining the fate of nutrients, including nitrogen (N), supplied by groundwater. Nitrification influences the fate of N, oxidising reduced dissolved inorganic nitrogen (DIN), making it available for N removal. We used metabarcoding of 16S rRNA genes and quantitative PCR (qPCR) of ammonia monooxygenase (amoA) genes to characterise spatial and temporal variation in STE microbial community structure and nitrifying organisms. We examined nitrifier diversity, distribution and abundance to determine how geochemical measurements influenced their distribution in STEs. Sediment microbial communities varied with depth (p‐value = 0.001) and followed geochemical gradients in dissolved oxygen (DO), salinity, pH, dissolved inorganic carbon and DIN. Genetic potential for nitrification in the STE was evidenced by qPCR quantification ofamoAgenes. Ammonia oxidiser abundance was best explained by DIN, DO and pH. Our results suggest that geochemical gradients are tightly linked to STE community composition and nitrifier abundance, which are important to determine the fate and transport of groundwater‐derived nutrients to coastal waters. 
    more » « less
  3. Abstract Subterranean estuaries (STEs) form in the subsurface where fresh groundwater and seawater meet and mix. Subterranean estuaries support a variety of biogeochemical processes including those transforming nitrogen (N). Groundwater is often enriched with dissolved inorganic nitrogen (DIN), and transformations in the STE determine the fate of that DIN, which may be discharged to coastal waters. Nitrification oxidizes ammonium (NH4+) to nitrate, making DIN available for N removal via denitrification. We measured nitrification at an STE, in Virginia, USA using in situ and ex situ methods including conservative mixing models informed by in situ geochemical profiles, an in situ experiment with15NH4+tracer injection, and ex situ sediment slurry incubations with15NH4+tracer addition. All methods indicated nitrification in the STE, but the ex situ sediment slurries revealed higher rates than both the in situ tracr experiment and mixing model estimations. Nitrification rates ranged 55.0–183.16 μmol N m−2 d−1based on mixing models, 94.2–225 μmol N m−2 d−1in the in situ tracer experiment, and 36.6–109 μmol N m−2 d−1slurry incubations. The in situ tracer experiment revealed higher rates and spatial variation not captured by the other methods. The geochemical complexity of the STE makes it difficult to replicate in situ conditions with incubations and calculations based on chemical profiles integrate over longer timescales, therefore, in situ approaches may best quantify transformation rates. Our data suggest that STE nitrification produces NO3, altering the DIN pool discharged to overlying water via submarine groundwater discharge. 
    more » « less
  4. null (Ed.)
    Quantifying and characterizing groundwater flow and discharge from barrier islands to coastal waters is crucial for assessing freshwater resources and contaminant transport to the ocean. In this study, we examined the groundwater hydrological response, discharge, and associated nutrient fluxes in Dauphin Island, a barrier island located in the northeastern Gulf of Mexico. We employed radon ( 222 Rn) and radium (Ra) isotopes as tracers to evaluate the temporal and spatial variability of fresh and recirculated submarine groundwater discharge (SGD) in the nearshore waters. The results from a 40-day continuous 222 Rn time series conducted during a rainy season suggest that the coastal area surrounding Dauphin Island was river-dominated in the days after storm events. Groundwater response was detected about 1 week after the precipitation and peak river discharge. During the period when SGD was a factor in the nutrient budget of the coastal area, the total SGD rates were as high as 1.36 m day –1 , or almost three times higher than detected fluxes during the river-dominated period. We found from a three-endmember Ra mixing model that most of the SGD from the barrier island was composed of fresh groundwater. SGD was driven by marine and terrestrial forces, and focused on the southeastern part of the island. We observed spatial variability of nutrients in the subterranean estuary across this part of the island. Reduced nitrogen (i.e., NH 4 + and dissolved organic nitrogen) fluxes dominated the eastern shore with average rates of 4.88 and 5.20 mmol m –2 day –1 , respectively. In contrast, NO 3 – was prevalent along the south-central shore, which has significant tourism developments. The contrasting nutrient dynamics resulted in N- and P-limited coastal water in the different parts of the island. This study emphasizes the importance of understanding groundwater flow and dynamics in barrier islands, particularly those urbanized, prone to storm events, or located near large estuaries. 
    more » « less
  5. none (Ed.)
    Abstract Anthropogenic nitrogen (N) inputs to the landscape have serious consequences for inland and coastal waters. Reservoirs are effective at mitigating downstream N fluxes but measurements have generally focused on large reservoirs and have not considered seasonal variability or all N forms. In this study, we conducted an N mass balance in eight small reservoirs (surface area <0.55 km2) in coastal New England over annual time periods, including both inorganic and organic forms of N. We found that small reservoirs have high capacity for dissolved inorganic N (DIN) retention during low and moderate discharge, but are roughly in balance for DIN at higher discharge. Because proportional DIN retention occurred when N inputs were at their lowest, their effect on downstream N fluxes is small over annual time frames. Further, dissolved organic N (DON) was also evident during low flow late in the warm season. Accounting for DON production, the net effect of reservoirs on total dissolved N (TDN) fluxes was limited. These transformations between inorganic and organic N should be considered when evaluating the effect of small reservoirs on TDN fluxes over seasonal and annual timescales. With dam removal becoming a common solution to aging, unsafe dams, their ability to retain or produce N must be scrutinized at longer time scales while accounting for the complete N pool to better comprehend the effect their reservoirs have on downstream waters. 
    more » « less