skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MELDER: The Design and Evaluation of a Real-time Silent Speech Recognizer for Mobile Devices
Silent speech is unaffected by ambient noise, increases accessibility, and enhances privacy and security. Yet current silent speech recognizers operate in a phrase-in/phrase-out manner, thus are slow, error prone, and impractical for mobile devices. We present MELDER, a Mobile Lip Reader that operates in real-time by splitting the input video into smaller temporal segments to process them individually. An experiment revealed that this substantially improves computation time, making it suitable for mobile devices. We further optimize the model for everyday use by exploiting the knowledge from a high-resource vocabulary using a transfer learning model. We then compare MELDER in both stationary and mobile settings with two state-of-the-art silent speech recognizers, where MELDER demonstrated superior overall performance. Finally, we compare two visual feedback methods of MELDER with the visual feedback method of Google Assistant. The outcomes shed light on how these proposed feedback methods influence users' perceptions of the model's performance.  more » « less
Award ID(s):
2239633
PAR ID:
10579860
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400703300
Page Range / eLocation ID:
1 to 23
Subject(s) / Keyword(s):
Silent Speech Digital Lip Reading Image Processing Deep Learning Transfer Learning Language Modeling Visual Feedback Text Input
Format(s):
Medium: X
Location:
Honolulu, HI, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Most mobile health apps employ data visualization to help people view their health and activity data, but these apps provide limited support for visual data exploration. Furthermore, despite its huge potential benefits, mobile visualization research in the personal data context is sparse. This work aims to empower people to easily navigate and compare their personal health data on smartphones by enabling flexible time manipulation with speech. We designed and developed Data@Hand, a mobile app that leverages the synergy of two complementary modalities: speech and touch. Through an exploratory study with 13 long-term Fitbit users, we examined how multimodal interaction helps participants explore their own health data. Participants successfully adopted multimodal interaction (i.e., speech and touch) for convenient and fluid data exploration. Based on the quantitative and qualitative findings, we discuss design implications and opportunities with multimodal interaction for better supporting visual data exploration on mobile devices. 
    more » « less
  2. For people with visual impairments, photography is essential in identifying objects through remote sighted help and image recognition apps. This is especially the case for teachable object recognizers, where recognition models are trained on user's photos. Here, we propose real-time feedback for communicating the location of an object of interest in the camera frame. Our audio-haptic feedback is powered by a deep learning model that estimates the object center location based on its proximity to the user's hand. To evaluate our approach, we conducted a user study in the lab, where participants with visual impairments (N=9) used our feedback to train and test their object recognizer in vanilla and cluttered environments. We found that very few photos did not include the object (2% in the vanilla and 8% in the cluttered) and the recognition performance was promising even for participants with no prior camera experience. Participants tended to trust the feedback even though they know it can be wrong. Our cluster analysis indicates that better feedback is associated with photos that include the entire object. Our results provide insights into factors that can degrade feedback and recognition performance in teachable interfaces. 
    more » « less
  3. Previous work has benchmarked multiple speech recognition systems in terms of Word Error Rate (WER) for speech intended for artificial agents. This metric allows us to compare recognizers in terms of the frequency of errors, however errors are not equally meaningful in terms of their impact on understanding the utterance and generating a coherent response. We investigate how the actual recognition results of 10 different speech recognizers and models result in response appropriateness for a virtual human (Sergeant Blackwell), who was part of a museum exhibit, fielding questions ”in the wild” from museum visitors. Results show a general correlation between WER and response quality, but this pattern doesn’t hold for all recognizers. 
    more » « less
  4. We introduce a deep learning model for speech denoising, a long-standing challenge in audio analysis arising in numerous applications. Our approach is based on a key observation about human speech: there is often a short pause between each sentence or word. In a recorded speech signal, those pauses introduce a series of time periods during which only noise is present. We leverage these incidental silent intervals to learn a model for automatic speech denoising given only mono-channel audio. Detected silent intervals over time expose not just pure noise but its time-varying features, allowing the model to learn noise dynamics and suppress it from the speech signal. Experiments on multiple datasets confirm the pivotal role of silent interval detection for speech denoising, and our method outperforms several state-of-the-art denoising methods, including those that accept only audio input (like ours) and those that denoise based on audiovisual input (and hence require more information). We also show that our method enjoys excellent generalization properties, such as denoising spoken languages not seen during training. 
    more » « less
  5. This paper describes experiments in training HMM-based text-to-speech (TTS) voices on data collected for Automatic Speech Recognition (ASR) training. We compare a number of filtering techniques designed to identify the best utterances from a noisy, multi-speaker corpus for training voices, to exclude speech containing noise and to include speech close in nature to more traditionally-collected TTS corpora. We also evaluate the use of automatic speech recognizers for intelligibility assessment in comparison with crowdsourcing methods. While the goal of this work is to develop natural-sounding and intelligible TTS voices in Low Resource Languages (LRLs) rapidly and easily, without the expense of recording data specifically for this purpose, we focus on English initially to identify the best filtering techniques and evaluation methods. We find that, when a large amount of data is available, selecting from the corpus based on criteria such as standard deviation of f0, fast speaking rate, and hypo-articulation produces the most intelligible voices. 
    more » « less