skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Supergrowth in speckle patterns
Supergrowth occurs when the local amplitude growth rate of a wave is greater than that predicted by the band limit. While generating supergrowth on demand requires precise source modulation, we demonstrate that supergrowth occurs naturally in a sum of random plane waves. We measure the supergrowing fractional area of transverse, monochromatic, fully developed speckle patterns. For speckle with a disk spectrum, we find that the average fractional supergrowing area approaches 20%. We compare the supergrowing and superoscillating fractional areas and find great similarity in behavior. Our results inform on the ubiquity of superphenomena in speckle patterns and are relevant to imaging and estimation.  more » « less
Award ID(s):
2244031
PAR ID:
10579861
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Optica
Date Published:
Journal Name:
Optics Letters
Volume:
50
Issue:
1
ISSN:
0146-9592
Page Range / eLocation ID:
137
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Speckle patterns have been used widely in imaging techniques such as ghost imaging, dynamic speckle illumination microscopy, structured illumination microscopy, and photoacoustic fluctuation imaging. Recent advances in the ability to control the statistical properties of speckles has enabled the customization of speckle patterns for specific imaging applications. In this work, we design and create special speckle patterns for parallelized nonlinear pattern-illumination microscopy based on fluorescence photoswitching. We present a proof-of-principle experimental demonstration where we obtain a spatial resolution three times higher than the diffraction limit of the illumination optics in our setup. Furthermore, we show that tailored speckles vastly outperform standard speckles. Our work establishes that customized speckles are a potent tool in parallelized super-resolution microscopy. 
    more » « less
  2. We present a novel method, to our knowledge, to synthesize non-trivial speckle patterns that can enable sub-Rayleigh second-order correlation imaging. The speckle patterns acquire a unique anti-correlation in the spatial intensity fluctuation by introducing the blue noise distribution on spatial Fourier power spectrum to the input light fields through amplitude modulation. Illuminating objects with the blue noise speckle patterns can lead to a sub-diffraction limit imaging system with a resolution more than three times higher than first-order imaging, which is comparable to the resolving power of ninth order correlation imaging with thermal light. Our method opens a new route towards non-trivial speckle pattern generation by tailoring amplitudes in spatial Fourier power spectrum of the input light fields and provides a versatile scheme for constructing sub-Rayleigh imaging and microscopy systems without invoking complicated higher-order correlations. 
    more » « less
  3. The generation of speckle patterns via random matrices, statistical definitions, or apertures may not always result in optimal outcomes. Issues such as correlation fluctuations in low ensemble numbers and diffraction in long-distance propagation can arise. Instead of improving results of specific applications, our solution is catching deep correlations of patterns with the framework, Speckle-Net, which is fundamental and universally applicable to various systems. We demonstrate this in computational ghost imaging (CGI) and structured illumination microscopy (SIM). In CGI with extremely low ensemble number, it customizes correlation width and minimizes correlation fluctuations in illuminating patterns to achieve higher-quality images. It also creates non-Rayleigh nondiffracting speckle patterns only through a phase mask modulation, which overcomes the power loss in the traditional ring-aperture method. Our approach provides new insights into the nontrivial speckle patterns and has great potential for a variety of applications including dynamic SIM, X-ray and photo-acoustic imaging, and disorder physics. 
    more » « less
  4. Summary Nuclear speckles are membraneless organelles implicated in multiple RNA processing steps. In this work, we systematically characterize the sequence logic determining RNA localization to nuclear speckles. We find extensive similarities between the speckle localization code and the RNA splicing code, even for transcripts that do not undergo splicing. Specifically, speckle localization is enhanced by the presence of unspliced exon-like or intron-like sequence features. We demonstrate that interactions required for early splicesomal complex assembly contribute to speckle localization. We also show that speckle localization of isolated endogenous exons is reduced by disease-associated single nucleotide variants. Finally, we find that speckle localization strongly correlates with splicing kinetics of splicing-competent constructs and is tightly linked to the decision between exon inclusion and skipping. Together, these results suggest a model in which RNA speckle localization is associated with the formation of the early spliceosomal complex and enhances the efficiency of splicing reactions. HighlightsSequences containing hallmarks of pre-mRNA dictate speckle localizationRNA speckle localization is coupled to early spliceosome assemblyDisease-associated single nucleotide variants reduce localization of isolated exonsRNA speckle localization strongly correlates with splicing kineticsGraphical Abstract 
    more » « less
  5. Coherent images of scattering materials, such as biological tissue, typically exhibit high-frequency intensity fluctuations known as speckle. These seemingly noise-like speckle patterns have strong statistical correlation properties that have been successfully utilized by computational imaging systems in different application areas. Unfortunately, these properties are not well-understood, in part due to the difficulty of simulating physically-accurate speckle patterns. In this work, we propose a new model for speckle statistics based on a single scattering approximation, that is, the assumption that all light contributing to speckle correlation has scattered only once. Even though single-scattering models have been used in computer vision and graphics to approximate intensity images due to scattering, such models usually hold only for very optically thin materials, where light indeed does not scatter more than once. In contrast, we show that the single-scattering model for speckle correlation remains accurate for much thicker materials. We evaluate the accuracy of the single-scattering correlation model through exhaustive comparisons against an exact speckle correlation simulator. We additionally demonstrate the model's accuracy through comparisons with real lab measurements. We show, that for many practical application settings, predictions from the single-scattering model are more accurate than those from other approximate models popular in optics, such as the diffusion and Fokker-Planck models. We show how to use the single-scattering model to derive closed-form expressions for speckle correlation, and how these expressions can facilitate the study of statistical speckle properties. In particular, we demonstrate that these expressions provide simple explanations for previously reported speckle properties, and lead to the discovery of new ones. Finally, we discuss potential applications for future computational imaging systems. 
    more » « less