The Influence of Diatoms on Hydromechanical Properties of Marine Sediments
Abstract Microfossils can have a large impact on the hydromechanical properties of marine sediments. Here, we study how these properties change in sediment mixtures containing varying concentrations of diatoms during experimental loading. We mixed an illite‐rich glaciomarine clay known as Boston Blue Clay (BBC) and a smectite‐rich marine clay known as Eugene Island Clay (EI) with marine and lacustrine diatoms in mass ratios of 100:00, 90:10, and 80:20. These mixtures were uniaxially compressed to 100 kPa in resedimentation tests and further loaded to 2 MPa in constant rate of strain consolidation experiments. We found that adding diatoms results in an increase in void ratio, compressibility, and vertical permeability at a given vertical effective stress for both sediments. These changes are due to an increased intraskeletal and interskeletal porosity caused by the porous nature of diatoms and their ability to form stress bridges. With increasing vertical effective stress, sediments lose their permeability at a slower rate when containing diatoms. These changes are most evident in BBC mixtures. When comparing both sediment types, void ratio and permeability decrease faster during burial for the EI mixtures than the BBC mixtures. These results provide new insights into the hydromechanical behavior of microfossil‐rich marine sediments and contribute to our understanding of their potential for overpressure generation and the development of a weak layer.
more »
« less
- Award ID(s):
- 1945011
- PAR ID:
- 10579862
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 26
- Issue:
- 4
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We study stress, pressure, and rock properties in evolving accretionary wedges using analytical formulations and geomechanical models. The evolution of the stress state from that imposed by uniaxial burial seaward of the trench to Coulomb failure within the wedge generates overpressure and drives compaction above the décollement. Changes in both mean and shear stress generate overpressure and shear‐induced pressures play a particularly important role in the trench area. In the transition zone between uniaxial burial and Coulomb failure, shear‐induced overpressures increase more than overburden and are higher than footwall pressures. This rapid increase in overpressure reduces the effective normal stress and weakens the plate interface along a zone that onsets ahead of the trench and persists well into the subduction zone. It also drives dewatering at the trench, which enables compaction of the hanging‐wall sediments and a porosity offset at the décollement. Within the accretionary wedge, sediments are at Coulomb failure and the pore pressure response is proportional to changes in mean stress. Low permeability and high convergence rates promote overpressure generation in the wedge, which limits sediment strength. Our results may provide a hydromechanical explanation for a wide range of observed behaviors, including the development of protothrust zones, widespread occurrence of shallow slow earthquake phenomena, and the propagation of large shallow coseismic slip.more » « less
-
Abstract A shallow sub‐seafloor seismic model that includes well‐determined seismic velocities and clarifies sediment‐crust discontinuities is needed to characterize the physical properties of marine sediments and the oceanic crust and to serve as a reference for deeper seismic modeling endeavors. This study estimates the seismic structure of marine sediments and the shallow oceanic crust of the Alaska‐Aleutian subduction zone at the Alaska Peninsula, using data from the Alaska Amphibious Community Seismic Experiment (AACSE). We measure seafloor compliance and Ps converted wave delays from AACSE ocean‐bottom seismometers (OBS) and seafloor pressure data and interpret these measurements using a joint Bayesian Monte Carlo inversion to produce a sub‐seafloor S‐wave velocity model beneath each available OBS station. The sediment thickness across the array varies considerably, ranging from about 50 m to 2.80 km, with the thickest sediment located in the continental slope. Lithological composition plays an important role in shaping the seismic properties of seafloor sediment. Deep‐sea deposits on the incoming plate, which contain biogenic materials, tend to have reduced S‐wave velocities, contrasting with the clay‐rich sediments in the shallow continental shelf and continental slope. A difference in S‐wave velocities is observed for upper oceanic crust formed at fast‐rate (Shumagin) and intermediate‐rate (Semidi) spreading centers. The reduced S‐wave velocities in the Semidi crust may be caused by increased faulting and possible lithological variations, related to a previous period of intermediate‐rate spreading.more » « less
-
Submarine slope failures pose risks to coastlines because they can damage infrastructure and generate tsunamis. Passive margin slope failures represent the largest mass failures on Earth, yet we know little about their dynamics. While numerous studies characterize the lithology, structure, seismic attributes and geometry of failure deposits, we lack direct observations of failure evolution. Thus, we lack insight into the relationships between initial conditions, slope failure initiation and evolution, and final deposits. To investigate submarine slope failure dynamics in relation to initial conditions and to observe failure processes we performed physical experiments in a benchtop flume and produced numerical models. Submarine slope failures were induced under controlled pore pressure within sand–clay mixtures (0–5 wt% clay). Increased clay content corresponded to increased cohesion and pore pressure required for failure. Subsurface fractures and tensile cracks were only generated in experiments containing clay. Falling head tests showed a log-linear relation between hydraulic conductivity and clay content, which we used in our numerical models. Models of our experiments effectively simulate overpressure (pressure in excess of hydrostatic) and failure potential for (non)cohesive sediment mixtures. Overall our work shows the importance of clay in reducing permeability and increasing cohesion to create different failure modes due to overpressure.more » « less
-
Abstract. The oceanic silicon cycle has undergone a profound transformation from an abiotic system in the Precambrian to a biologically regulated cycle driven by siliceous organisms such as diatoms, Rhizaria, and sponges. These organisms actively uptake silicon using specialized proteins to transport and polymerize it into amorphous silica through the process of biosilification. This biological control varies depending on environmental conditions, influencing both the rate of silicification and its ecological function, including structural support, defence, and stress mitigation. Evidence suggests that silicification has evolved multiple times independently across different taxa, each developing distinct molecular mechanisms for silicon handling. This review identifies major gaps in our understanding of biosilicification, particularly among lesser-known silicifiers beyond traditional model organisms like diatoms. It emphasizes the ecological significance of these underexplored taxa and synthesizes current knowledge of molecular pathways involved in silicon uptake and polymerization. By comparing biosilicification strategies across taxa, this review calls for expanding the repertoire of model organisms and leveraging new advanced tools to uncover silicon transport mechanisms, efflux regulation, and environmental responses. It also emphasizes the need to integrate biological and geological perspectives, both to refine palaeoceanographic proxies and to improve the interpretation of microfossil records and present-day biogeochemical models. On a global scale, silicon enters the ocean primarily via terrestrial weathering and is removed through burial in sediments and/or authigenic clay formation. While open-ocean processes are relatively well studied, dynamic boundary zones – where land, sediments, and ice interact with seawater – are nowadays recognized as key regulators of silicon fluxes, though they remain poorly understood. Therefore, special attention is given to the role of dynamic boundary zones such as the interfaces between land and ocean, the benthic zone, and the cryosphere, which are often overlooked yet play critical roles in controlling silicon cycling. By bringing together cross-discipline insights, this review proposes a new integrated framework for understanding the complex biological and biogeochemical dimensions of the oceanic silicon cycle. This integrated perspective is essential for improving global silicon budget estimates, predicting climate-driven changes in marine productivity, and assessing the role of silicon in modulating Earth’s long-term carbon balance.more » « less
An official website of the United States government
