The problem of testing monotonicity for Boolean functions on the hypergrid, $$f:[n]^d \to \{0,1\}$$ is a classic topic in property testing. When $n=2$, the domain is the hypercube. For the hypercube case, a breakthrough result of Khot-Minzer-Safra (FOCS 2015) gave a non-adaptive, one-sided tester making $$\otilde(\eps^{-2}\sqrt{d})$$ queries. Up to polylog $$d$$ and $$\eps$$ factors, this bound matches the $$\widetilde{\Omega}(\sqrt{d})$$-query non-adaptive lower bound (Chen-De-Servedio-Tan (STOC 2015), Chen-Waingarten-Xie (STOC 2017)). For any $n > 2$, the optimal non-adaptive complexity was unknown. A previous result of the authors achieves a $$\otilde(d^{5/6})$$-query upper bound (SODA 2020), quite far from the $$\sqrt{d}$$ bound for the hypercube. In this paper, we resolve the non-adaptive complexity of monotonicity testing for all constant $$n$$, up to $$\poly(\eps^{-1}\log d)$$ factors. Specifically, we give a non-adaptive, one-sided monotonicity tester making $$\otilde(\eps^{-2}n\sqrt{d})$$ queries. From a technical standpoint, we prove new directed isoperimetric theorems over the hypergrid $[n]^d$. These results generalize the celebrated directed Talagrand inequalities that were only known for the hypercube. 
                        more » 
                        « less   
                    This content will become publicly available on January 1, 2026
                            
                            Directed Hypercube Routing, a Generalized Lehman-Ron Theorem, and Monotonicity Testing
                        
                    
    
            Motivated by applications to monotonicity testing, Lehman and Ron (JCTA, 2001) proved the existence of a collection of vertex disjoint paths between comparable sub-level sets in the directed hypercube. The main technical contribution of this paper is a new proof method that yields a generalization of their theorem: we prove the existence of two edge-disjoint collections of vertex disjoint paths. Our main conceptual contributions are conjectures on directed hypercube flows with simultaneous vertex and edge capacities of which our generalized Lehman-Ron theorem is a special case. We show that these conjectures imply directed isoperimetric theorems, and in particular, the robust directed Talagrand inequality due to Khot, Minzer, and Safra (SIAM J. on Comp, 2018). These isoperimetric inequalities, that relate the directed surface area (of a set in the hypercube) to its distance to monotonicity, have been crucial in obtaining the best monotonicity testers for Boolean functions. We believe our conjectures pave the way towards combinatorial proofs of these directed isoperimetry theorems. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10579866
- Editor(s):
- Meka, Raghu
- Publisher / Repository:
- Schloss Dagstuhl – Leibniz-Zentrum für Informatik
- Date Published:
- Volume:
- 325
- ISSN:
- 1868-8969
- ISBN:
- 978-3-95977-361-4
- Page Range / eLocation ID:
- 34:1-34:15
- Subject(s) / Keyword(s):
- Monotonicity testing isoperimetric inequalities hypercube routing Theory of computation → Streaming, sublinear and near linear time algorithms Theory of computation → Randomness, geometry and discrete structures
- Format(s):
- Medium: X Size: 15 pages; 977055 bytes Other: application/pdf
- Size(s):
- 15 pages 977055 bytes
- Right(s):
- Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Tauman_Kalai, Yael (Ed.)We show improved monotonicity testers for the Boolean hypercube under the p-biased measure, as well as over the hypergrid [m]ⁿ. Our results are: 1) For any p ∈ (0,1), for the p-biased hypercube we show a non-adaptive tester that makes Õ(√n/ε²) queries, accepts monotone functions with probability 1 and rejects functions that are ε-far from monotone with probability at least 2/3. 2) For all m ∈ ℕ, we show an Õ(√nm³/ε²) query monotonicity tester over [m]ⁿ. We also establish corresponding directed isoperimetric inequalities in these domains, analogous to the isoperimetric inequality in [Subhash Khot et al., 2018]. Previously, the best known tester due to Black, Chakrabarty and Seshadhri [Hadley Black et al., 2018] had Ω(n^{5/6}) query complexity. Our results are optimal up to poly-logarithmic factors and the dependency on m. Our proof uses a notion of monotone embeddings of measures into the Boolean hypercube that can be used to reduce the problem of monotonicity testing over an arbitrary product domains to the Boolean cube. The embedding maps a function over a product domain of dimension n into a function over a Boolean cube of a larger dimension n', while preserving its distance from being monotone; an embedding is considered efficient if n' is not much larger than n, and we show how to construct efficient embeddings in the above mentioned settings.more » « less
- 
            Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)In the k-Disjoint Shortest Paths (k-DSP) problem, we are given a graph G (with positive edge weights) on n nodes and m edges with specified source vertices s_1, … , s_k, and target vertices t_1, … , t_k, and are tasked with determining if G contains vertex-disjoint (s_i,t_i)-shortest paths. For any constant k, it is known that k-DSP can be solved in polynomial time over undirected graphs and directed acyclic graphs (DAGs). However, the exact time complexity of k-DSP remains mysterious, with large gaps between the fastest known algorithms and best conditional lower bounds. In this paper, we obtain faster algorithms for important cases of k-DSP, and present better conditional lower bounds for k-DSP and its variants. Previous work solved 2-DSP over weighted undirected graphs in O(n⁷) time, and weighted DAGs in O(mn) time. For the main result of this paper, we present optimal linear time algorithms for solving 2-DSP on weighted undirected graphs and DAGs. Our linear time algorithms are algebraic however, and so only solve the detection rather than search version of 2-DSP (we show how to solve the search version in O(mn) time, which is faster than the previous best runtime in weighted undirected graphs, but only matches the previous best runtime for DAGs). We also obtain a faster algorithm for k-Edge Disjoint Shortest Paths (k-EDSP) in DAGs, the variant of k-DSP where one seeks edge-disjoint instead of vertex-disjoint paths between sources and their corresponding targets. Algorithms for k-EDSP on DAGs from previous work take Ω(m^k) time. We show that k-EDSP can be solved over DAGs in O(mn^{k-1}) time, matching the fastest known runtime for solving k-DSP over DAGs. Previous work established conditional lower bounds for solving k-DSP and its variants via reductions from detecting cliques in graphs. Prior work implied that k-Clique can be reduced to 2k-DSP in DAGs and undirected graphs with O((kn)²) nodes. We improve this reduction, by showing how to reduce from k-Clique to k-DSP in DAGs and undirected graphs with O((kn)²) nodes (halving the number of paths needed in the reduced instance). A variant of k-DSP is the k-Disjoint Paths (k-DP) problem, where the solution paths no longer need to be shortest paths. Previous work reduced from k-Clique to p-DP in DAGs with O(kn) nodes, for p = k + k(k-1)/2. We improve this by showing a reduction from k-Clique to p-DP, for p = k + ⌊k²/4⌋. Under the k-Clique Hypothesis from fine-grained complexity, our results establish better conditional lower bounds for k-DSP for all k ≥ 4, and better conditional lower bounds for p-DP for all p ≤ 4031. Notably, our work gives the first nontrivial conditional lower bounds 4-DP in DAGs and 4-DSP in undirected graphs and DAGs. Before our work, nontrivial conditional lower bounds were only known for k-DP and k-DSP on such graphs when k ≥ 6.more » « less
- 
            One of the most intruguing conjectures in extremal graph theory is the conjecture of Erdős and Sós from 1962, which asserts that every $$n$$-vertex graph with more than $$\frac{k-1}{2}n$$ edges contains any $$k$$-edge tree as a subgraph. Kalai proposed a generalization of this conjecture to hypergraphs. To explain the generalization, we need to define the concept of a tight tree in an $$r$$-uniform hypergraph, i.e., a hypergraph where each edge contains $$r$$ vertices. A tight tree is an $$r$$-uniform hypergraph such that there is an ordering $$v_1,\ldots,v_n$$ of its its vertices with the following property: the vertices $$v_1,\ldots,v_r$$ form an edge and for every $i>r$, there is a single edge $$e$$ containing the vertex $$v_i$$ and $r-1$ of the vertices $$v_1,\ldots,v_{i-1}$$, and $$e\setminus\{v_i\}$$ is a subset of one of the edges consisting only of vertices from $$v_1,\ldots,v_{i-1}$$. The conjecture of Kalai asserts that every $$n$$-vertex $$r$$-uniform hypergraph with more than $$\frac{k-1}{r}\binom{n}{r-1}$$ edges contains every $$k$$-edge tight tree as a subhypergraph. The recent breakthrough results on the existence of combinatorial designs by Keevash and by Glock, Kühn, Lo and Osthus show that this conjecture, if true, would be tight for infinitely many values of $$n$$ for every $$r$$ and $$k$$.The article deals with the special case of the conjecture when the sought tight tree is a path, i.e., the edges are the $$r$$-tuples of consecutive vertices in the above ordering. The case $r=2$ is the famous Erdős-Gallai theorem on the existence of paths in graphs. The case $r=3$ and $k=4$ follows from an earlier work of the authors on the conjecture of Kalai. The main result of the article is the first non-trivial upper bound valid for all $$r$$ and $$k$$. The proof is based on techniques developed for a closely related problem where a hypergraph comes with a geometric structure: the vertices are points in the plane in a strictly convex position and the sought path has to zigzag beetwen the vertices.more » « less
- 
            Meka, Raghu (Ed.)We study the stochastic minimum vertex cover problem for general graphs. In this problem, we are given a graph G=(V, E) and an existence probability p_e for each edge e ∈ E. Edges of G are realized (or exist) independently with these probabilities, forming the realized subgraph H. The existence of an edge in H can only be verified using edge queries. The goal of this problem is to find a near-optimal vertex cover of H using a small number of queries. Previous work by Derakhshan, Durvasula, and Haghtalab [STOC 2023] established the existence of 1.5 + ε approximation algorithms for this problem with O(n/ε) queries. They also show that, under mild correlation among edge realizations, beating this approximation ratio requires querying a subgraph of size Ω(n ⋅ RS(n)). Here, RS(n) refers to Ruzsa-Szemerédi Graphs and represents the largest number of induced edge-disjoint matchings of size Θ(n) in an n-vertex graph. In this work, we design a simple algorithm for finding a (1 + ε) approximate vertex cover by querying a subgraph of size O(n ⋅ RS(n)) for any absolute constant ε > 0. Our algorithm can tolerate up to O(n ⋅ RS(n)) correlated edges, hence effectively completing our understanding of the problem under mild correlation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
