skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Calibration of Solid State Nuclear Track Detectors for rare event searches
Abstract The calibration of the CR39®and Makrofol®Nuclear Track Detectors of the MoEDAL experiment at the CERN-LHC was performed by exposing stacks of detector foils to heavy ion beams with energies ranging from 340 MeV/nucleon to 150 GeV/nucleon. After chemical etching, the base areas and lengths of etch-pit cones were measured using automatic and manual optical microscopes. The response of the detectors as measured by the ratio of the track-etching rate over the bulk-etching rate, was determined over a range extending from their threshold at Z/β∼ 7 and ∼ 50 for CR39 and Makrofol, respectively, up to Z/β∼ 92.  more » « less
Award ID(s):
2309505
PAR ID:
10580216
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
JINST
Date Published:
Journal Name:
Journal of Instrumentation
Volume:
20
Issue:
03
ISSN:
1748-0221
Page Range / eLocation ID:
P03014
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a new investigation of the intergalactic medium near reionization using dark gaps in the Lyβforest. With its lower optical depth, Lyβoffers a potentially more sensitive probe to any remaining neutral gas compared to the commonly used Lyαline. We identify dark gaps in the Lyβforest using spectra of 42 QSOs atzem> 5.5, including new data from the XQR-30 VLT Large Programme. Approximately 40% of these QSO spectra exhibit dark gaps longer than 10h−1Mpc atz≃ 5.8. By comparing the results to predictions from simulations, we find that the data are broadly consistent both with models where fluctuations in the Lyαforest are caused solely by ionizing ultraviolet background fluctuations and with models that include large neutral hydrogen patches atz< 6 due to a late end to reionization. Of particular interest is a very long (L= 28h−1Mpc) and dark (τeff≳ 6) gap persisting down toz≃ 5.5 in the Lyβforest of thez= 5.85 QSO PSO J025−11. This gap may support late reionization models with a volume-weighted average neutral hydrogen fraction of 〈xH I〉 ≳ 5% byz= 5.6. Finally, we infer constraints on 〈xH I〉 over 5.5 ≲z≲ 6.0 based on the observed Lyβdark gap length distribution and a conservative relationship between gap length and neutral fraction derived from simulations. We find 〈xH I〉 ≤ 0.05, 0.17, and 0.29 atz≃ 5.55, 5.75, and 5.95, respectively. These constraints are consistent with models where reionization ends significantly later thanz= 6. 
    more » « less
  2. Abstract We report the discovery of an accreting supermassive black hole atz= 8.679. This galaxy, denoted here as CEERS_1019, was previously discovered as a Lyα-break galaxy by Hubble with a Lyαredshift from Keck. As part of the Cosmic Evolution Early Release Science (CEERS) survey, we have observed this source with JWST/NIRSpec, MIRI, NIRCam, and NIRCam/WFSS and uncovered a plethora of emission lines. The Hβline is best fit by a narrow plus a broad component, where the latter is measured at 2.5σwith an FWHM ∼1200 km s−1. We conclude this originates in the broadline region of an active galactic nucleus (AGN). This is supported by the presence of weak high-ionization lines (N V, N IV], and C III]), as well as a spatial point-source component. The implied mass of the black hole (BH) is log (MBH/M) = 6.95 ± 0.37, and we estimate that it is accreting at 1.2 ± 0.5 times the Eddington limit. The 1–8μm photometric spectral energy distribution shows a continuum dominated by starlight and constrains the host galaxy to be massive (log M/M∼9.5) and highly star-forming (star formation rate, or SFR ∼ 30 Myr−1; log sSFR ∼ − 7.9 yr−1). The line ratios show that the gas is metal-poor (Z/Z∼ 0.1), dense (ne∼ 103cm−3), and highly ionized (logU∼ − 2.1). We use this present highest-redshift AGN discovery to place constraints on BH seeding models and find that a combination of either super-Eddington accretion from stellar seeds or Eddington accretion from very massive BH seeds is required to form this object. 
    more » « less
  3. Abstract The measured ages of massive, quiescent galaxies atz∼ 3–4 imply that massive galaxies quench as early asz∼ 6. While the number of spectroscopic confirmations of quiescent galaxies atz< 3 has increased over the years, there are only a handful atz> 3.5. We report spectroscopic redshifts of one secure (z= 3.757) and two tentative (z= 3.336 andz= 4.673) massive ( log ( M * / M ) > 10.3 ) quiescent galaxies with 11 hr of Keck/MOSFIREK-band observations. Our candidates were selected from the FLAMINGOS-2 Extragalactic Near-InfraredK-band Split (FENIKS) survey, which uses deep Gemini/Flamingos-2KbKrimaging optimized for increased sensitivity to the characteristic red colors of galaxies atz> 3 with a strong Balmer/4000 Å break. The rest-frameUVJand (ugi)scolors of three out of four quiescent candidates are consistent with 1–2 Gyr old stellar populations. This places these galaxies as the oldest objects at these redshifts, and challenges the notion that quiescent galaxies atz> 3 are all recently quenched, post-starburst galaxies. Our spectroscopy shows that the other quiescent-galaxy candidate is a broad-line active galactic nucleus (z= 3.594) with strong, redshifted Hβ+ [OIII] emission with a velocity offset > 1000 km s−1, indicative of a powerful outflow. The star formation history of our highest redshift candidate suggests that its progenitor was already in place byz∼ 7–11, reaching ∼1011Mbyz≃ 8. These observations reveal the limit of what is possible with deep near-infrared photometry and targeted spectroscopy from the ground and demonstrate that secure spectroscopic confirmation of quiescent galaxies atz> 4 is feasible only with JWST. 
    more » « less
  4. Abstract JWST observations have recently begun delivering the first samples of Lyαvelocity profile measurements atz> 6, opening a new window into the reionization process. Interpretation ofz≳ 6 line profiles is currently stunted by limitations in our knowledge of the intrinsic Lyαprofile (before encountering the intergalactic medium (IGM)) of the galaxies that are common atz≳ 6. To overcome this shortcoming, we have obtained resolved (R∼ 3900) Lyαspectroscopy of 42 galaxies atz= 2.1–3.4 with similar properties as are seen atz> 6. We quantify a variety of Lyαprofile statistics as a function of [Oiii]+Hβequivalent width (EW). Our spectra reveal a new population ofz≃ 2–3 galaxies with large [Oiii]+HβEWs (>1200 Å) and a large fraction of Lyαflux emerging near the systemic redshift (peak velocity ≃0 km s−1). These spectra indicate that low-density neutral hydrogen channels are able to form in a subset of low-mass galaxies (≲1 × 108M) that experience a burst of star formation (sSFR > 100 Gyr−1). Other extreme [Oiii] emitters show weaker Lyαthat is shifted to higher velocities (≃240 km s−1) with little emission near the line center. We investigate the impact the IGM is likely to have on these intrinsic line profiles in the reionization era, finding that the centrally peaked Lyαemitters should be strongly attenuated atz≳ 5. We show that these line profiles are particularly sensitive to the impact of resonant scattering from infalling IGM and can be strongly attenuated even when the IGM is highly ionized atz≃ 5. We compare these expectations against a new database ofz≳ 6.5 galaxies with robust velocity profiles measured with JWST/NIRSpec. 
    more » « less
  5. Abstract A combination of novel techniques such as a solvent‐free thin‐film deposition, perovskite patterning, and10B back‐fill technique enables the high neutron detection efficiency in a perovskite‐based microstructured thermal neutron detector. High‐efficiency cesium lead bromide (CsPbBr3) perovskite‐based microstructured detectors are demonstrated here. Trenches up to 10 µm deep are etched into the CsPbBr3thin films using a novel dry etching process involving a combination of HBr and Ar plasma. The microstructured diodes are then backfilled with isotopically enriched boron as neutron conversion material via a sedimentation process to preserve the perovskite integrity. The fabricated microstructured CsPbBr3thermal neutron detectors show an efficiency of 4.3%. This represents >1.2x efficiency improvement over planar silicon (3.5%) and >2x efficiency improvement over planar CsPbBr3(2.1%) detectors, respectively. More importantly, gamma‐ray discrimination of 107is measured in CsPbBr3‐based microstructured neutron detectors. 
    more » « less