Gene expression and complex phenotypes are determined by the activity of cis-regulatory elements. However, an understanding of how extant genetic variants affect cis regulation remains limited. Here, we investigated the consequences of cis-regulatory diversity using single-cell genomics of more than 0.7 million nuclei across 172Zea mays(maize) inbreds. Our analyses pinpointed cis-regulatory elements distinct to domesticated maize and revealed how historical transposon activity has shaped the cis-regulatory landscape. Leveraging population genetics principles, we fine-mapped about 22,000 chromatin accessibility–associated genetic variants with widespread cell type–specific effects. Variants in TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR–binding sites were the most prevalent determinants of chromatin accessibility. Finally, integrating chromatin accessibility–associated variants, organismal trait variation, and population differentiation revealed how local adaptation has rewired regulatory networks in unique cellular contexts to alter maize flowering.
more »
« less
Investigating the cis- regulatory basis of C 3 and C 4 photosynthesis in grasses at single-cell resolution
While considerable knowledge exists about the enzymes pivotal for C4photosynthesis, much less is known about thecis-regulation important for specifying their expression in distinct cell types. Here, we use single-cell-indexed ATAC-seq to identify cell-type-specific accessible chromatin regions (ACRs) associated with C4enzymes for five different grass species. This study spans four C4species, covering three distinct photosynthetic subtypes:Zea maysandSorghum bicolor(NADP-dependent malic enzyme),Panicum miliaceum(NAD-dependent malic enzyme),Urochloa fusca(phosphoenolpyruvate carboxykinase), along with the C3outgroupOryza sativa. We studied thecis-regulatory landscape of enzymes essential across all C4species and those unique to C4subtypes, measuring cell-type-specific biases for C4enzymes using chromatin accessibility data. Integrating these data with phylogenetics revealed diverse co-option of gene family members between species, showcasing the various paths of C4evolution. Besides promoter proximal ACRs, we found that, on average, C4genes have two to three distal cell-type-specific ACRs, highlighting the complexity and divergent nature of C4evolution. Examining the evolutionary history of these cell-type-specific ACRs revealed a spectrum of conserved and novel ACRs, even among closely related species, indicating ongoing evolution ofcis-regulation at these C4loci. This study illuminates the dynamic and complex nature ofcis-regulatory elements evolution in C4photosynthesis, particularly highlighting the intricatecis-regulatory evolution of key loci. Our findings offer a valuable resource for future investigations, potentially aiding in the optimization of C3crop performance under changing climatic conditions.
more »
« less
- PAR ID:
- 10580221
- Publisher / Repository:
- National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 121
- Issue:
- 40
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In plants, epidermal guard cells integrate and respond to numerous environmental signals to control stomatal pore apertures, thereby regulating gas exchange. Chromatin structure controls transcription factor (TF) access to the genome, but whether large-scale chromatin remodeling occurs in guard cells during stomatal movements, and in response to the hormone abscisic acid (ABA) in general, remains unknown. Here, we isolate guard cell nuclei fromArabidopsis thalianaplants to examine whether the physiological signals, ABA and CO2(carbon dioxide), regulate guard cell chromatin during stomatal movements. Our cell type–specific analyses uncover patterns of chromatin accessibility specific to guard cells and define cis-regulatory sequences supporting guard cell–specific gene expression. We find that ABA triggers extensive and dynamic chromatin remodeling in guard cells, roots, and mesophyll cells with clear patterns of cell type specificity. DNA motif analyses uncover binding sites for distinct TFs enriched in ABA-induced and ABA-repressed chromatin. We identify the Abscisic Acid Response Element (ABRE) Binding Factor (ABF) bZIP-type TFs that are required for ABA-triggered chromatin opening in guard cells and roots and implicate the inhibition of a clade of bHLH-type TFs in controlling ABA-repressed chromatin. Moreover, we demonstrate that ABA and CO2induce distinct programs of chromatin remodeling, whereby elevated atmospheric CO2had only minimal impact on chromatin dynamics. We provide insight into the control of guard cell chromatin dynamics and propose that ABA-induced chromatin remodeling primes the genome for abiotic stress resistance.more » « less
-
Abstract The genomes of flowering plants consist largely of transposable elements (TEs), some of which modulate gene regulation and function. However, the repetitive nature of TEs and difficulty of mapping individual TEs by short-read-sequencing have hindered our understanding of their regulatory potential. We demonstrate that long-read chromatin fiber sequencing (Fiber-seq) comprehensively identifies accessible chromatin regions (ACRs) and CpG methylation across the maize genome. We uncover stereotypical ACR patterns at young TEs that degenerate with evolutionary age, resulting in TE-enhancers preferentially marked by a novel plant-specific epigenetic feature: simultaneous hyper-CpG methylation and chromatin accessibility. We show that TE ACRs are co-opted as gene promoters and that ACR-containing TEs can facilitate gene amplification. Lastly, we uncover a pervasive epigenetic signature – hypo-5mCpG methylation and diffuse chromatin accessibility – directing TEs to specific loci, including the loci that sparked McClintock’s discovery of TEs.more » « less
-
Purugganan, Michael (Ed.)Abstract Subgenome dominance after whole-genome duplication (WGD) has been observed in many plant species. However, the degree to which the chromatin environment affects this bias has not been explored. Here, we compared the dominant subgenome (maize1) and the recessive subgenome (maize2) with respect to patterns of sequence substitutions, genes expression, transposable element accumulation, small interfering RNAs, DNA methylation, histone modifications, and accessible chromatin regions (ACRs). Our data show that the degree of bias between subgenomes for all the measured variables does not vary significantly when both of the WGD genes are located in pericentromeric regions. Our data further indicate that the location of maize1 genes in chromosomal arms is pivotal for maize1 to maintain its dominance, but location has a less effect on maize2 homoeologs. In addition to homoeologous genes, we compared ACRs, which often harbor cis-regulatory elements, between the two subgenomes and demonstrate that maize1 ACRs have a higher level of chromatin accessibility, a lower level of sequence substitution, and are enriched in chromosomal arms. Furthermore, we find that a loss of maize1 ACRs near their nearby genes is associated with a reduction in purifying selection and expression of maize1 genes relative to their maize2 homoeologs. Taken together, our data suggest that chromatin environment and cis-regulatory elements are important determinants shaping the divergence and evolution of duplicated genes.more » « less
-
Abstract The number of plant species with genomic and transcriptomic data has been increasing rapidly. The grasses—Poaceae—have been well represented among species with published reference genomes. However, as a result the genomes of wild grasses are less frequently targeted by sequencing efforts. Sequence data from wild relatives of crop species in the grasses can aid the study of domestication, gene discovery for breeding and crop improvement, and improve our understanding of the evolution of C4photosynthesis. Here, we used long‐read sequencing technology to characterize the transcriptomes of three C3panicoid grass species:Dichanthelium oligosanthes,Chasmanthium laxum, andHymenachne amplexicaulis. Based on alignments to the sorghum genome, we estimate that assembled consensus transcripts from each species capture between 54.2% and 65.7% of the conserved syntenic gene space in grasses. Genes co‐opted into C4were also well represented in this dataset, despite concerns that because these genes might play roles unrelated to photosynthesis in the target species, they would be expressed at low levels and missed by transcript‐based sequencing. A combined analysis using syntenic orthologous genes from grasses with published reference genomes and consensus long‐read sequences from these wild species was consistent with previously published phylogenies. It is hoped that these data, targeting underrepresented classes of species within the PACMAD grasses—wild species and species utilizing C3photosynthesis—will aid in future studies of domestication and C4evolution by decreasing the evolutionary distance between C4and C3species within this clade, enabling more accurate comparisons associated with evolution of the C4pathway.more » « less
An official website of the United States government

