skip to main content


Search for: All records

Award ID contains: 1856627

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Promoters and the noncoding sequences that drive their function are fundamental aspects of genes that are critical to their regulation. The transcription preinitiation complex binds and assembles on promoters where it facilitates transcription. The transcription start site (TSS) is located downstream of the promoter sequence and is defined as the location in the genome where polymerase begins transcribing DNA into RNA. Knowing the location of TSSs is useful for annotation of genes, identification of non‐coding sequences important to gene regulation, detection of alternative TSSs, and understanding of 5′ UTR content. Several existing techniques make it possible to accurately identify TSSs, but are often difficult to perform experimentally, require large amounts of input RNA, or are unable to identify a large number of TSSs from a single sample. Many of these protocols take advantage of template switching reverse transcriptases (TSRTs), which reliably place an adaptor at the 5′ end of a first strand synthesis of cDNA. Here, we introduce a protocol that exploits TSRT activity combined with rolling circle amplification to identify TSSs with several unique advantages over existing methods. Sequence adaptors are placed on the 5′ and 3′ end of the full‐length cDNA copy of a transcript. A splint compatible with those adaptors is then used to circularize the full‐length cDNA. Linear DNA containing concatemers of the cDNA are generated using rolling circle amplification, and a sequencing library is formed by fragmenting the concatemers. This protocol is straightforward to execute, requiring limited bench time with relatively stable reagents. Using extremely low amounts of RNA input, this protocol produces large numbers of accurate, deduplicated TSSs genome wide. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.

    Basic Protocol 1: Splint generation

    Basic Protocol 2: RNA extraction

    Basic Protocol 3: cDNA synthesis

    Basic Protocol 4: cDNA circularization and amplification

    Basic Protocol 5: Library generation

     
    more » « less
  2. High-throughput short-read sequencing has taken on a central role in research and diagnostics. Hundreds of different assays take advantage of Illumina short-read sequencers, the predominant short-read sequencing technology available today. Although other short-read sequencing technologies exist, the ubiquity of Illumina sequencers in sequencing core facilities and the high capital costs of these technologies have limited their adoption. Among a new generation of sequencing technologies, Oxford Nanopore Technologies (ONT) holds a unique position because the ONT MinION, an error-prone long-read sequencer, is associated with little to no capital cost. Here we show that we can make short-read Illumina libraries compatible with the ONT MinION by using the rolling circle to concatemeric consensus (R2C2) method to circularize and amplify the short library molecules. This results in longer DNA molecules containing tandem repeats of the original short library molecules. This longer DNA is ideally suited for the ONT MinION, and after sequencing, the tandem repeats in the resulting raw reads can be converted into high-accuracy consensus reads with similar error rates to that of the Illumina MiSeq. We highlight this capability by producing and benchmarking RNA-seq, ChIP-seq, and regular and target-enriched Tn5 libraries. We also explore the use of this approach for rapid evaluation of sequencing library metrics by implementing a real-time analysis workflow. 
    more » « less
  3. Abstract Background Regulation of chromatin accessibility and transcription are tightly coordinated processes. Studies in yeast and higher eukaryotes have described accessible chromatin regions, but little work has been done in filamentous fungi. Results Here we present a genome-scale characterization of accessible chromatin regions in Neurospora crassa , which revealed characteristic molecular features of accessible and inaccessible chromatin. We present experimental evidence of inaccessibility within heterochromatin regions in Neurospora, and we examine features of both accessible and inaccessible chromatin, including the presence of histone modifications, types of transcription, transcription factor binding, and relative nucleosome turnover rates. Chromatin accessibility is not strictly correlated with expression level. Accessible chromatin regions in the model filamentous fungus Neurospora are characterized the presence of H3K27 acetylation and commonly associated with pervasive non-coding transcription. Conversely, methylation of H3 lysine-36 catalyzed by ASH1 is correlated with inaccessible chromatin within promoter regions. Conclusions: In N. crassa, H3K27 acetylation is the most predictive histone modification for open chromatin. Conversely, our data show that H3K36 methylation is a key marker of inaccessible chromatin in gene-rich regions of the genome. Our data are consistent with an expanded role for H3K36 methylation in intergenic regions of filamentous fungi compared to the model yeasts, S. cerevisiae and S. pombe, which lack homologs of the ASH1 methyltransferase. 
    more » « less
  4. null (Ed.)
  5. Abstract The identification and characterization of cis-regulatory DNA sequences and how they function to coordinate responses to developmental and environmental cues is of paramount importance to plant biology. Key to these regulatory processes are cis-regulatory modules (CRMs), which include enhancers and silencers. Despite the extraordinary advances in high-quality sequence assemblies and genome annotations, the identification and understanding of CRMs, and how they regulate gene expression, lag significantly behind. This is especially true for their distinguishing characteristics and activity states. Here, we review the current knowledge on CRMs and breakthrough technologies enabling identification, characterization, and validation of CRMs; we compare the genomic distributions of CRMs with respect to their target genes between different plant species, and discuss the role of transposable elements harboring CRMs in the evolution of gene expression. This is an exciting time to study cis-regulomes in plants; however, significant existing challenges need to be overcome to fully understand and appreciate the role of CRMs in plant biology and in crop improvement. 
    more » « less
  6. Abstract Epigenomics is the study of molecular signatures associated with discrete regions within genomes, many of which are important for a wide range of nuclear processes. The ability to profile the epigenomic landscape associated with genes, repetitive regions, transposons, transcription, differential expression, cis-regulatory elements, and 3D chromatin interactions has vastly improved our understanding of plant genomes. However, many epigenomic and single-cell genomic assays are challenging to perform in plants, leading to a wide range of data quality issues; thus, the data require rigorous evaluation prior to downstream analyses and interpretation. In this commentary, we provide considerations for the evaluation of plant epigenomics and single-cell genomics data quality with the aim of improving the quality and utility of studies using those data across diverse plant species. 
    more » « less