skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Positive Tropical Grassmannian, the Hypersimplex, and the m = 2 Amplituhedron
Abstract The positive Grassmannian $$Gr^{\geq 0}_{k,n}$$ is a cell complex consisting of all points in the real Grassmannian whose Plücker coordinates are non-negative. In this paper we consider the image of the positive Grassmannian and its positroid cells under two different maps: the moment map$$\mu $$ onto the hypersimplex [ 31] and the amplituhedron map$$\tilde{Z}$$ onto the amplituhedron [ 6]. For either map, we define a positroid dissection to be a collection of images of positroid cells that are disjoint and cover a dense subset of the image. Positroid dissections of the hypersimplex are of interest because they include many matroid subdivisions; meanwhile, positroid dissections of the amplituhedron can be used to calculate the amplituhedron’s ‘volume’, which in turn computes scattering amplitudes in $$\mathcal{N}=4$$ super Yang-Mills. We define a map we call T-duality from cells of $$Gr^{\geq 0}_{k+1,n}$$ to cells of $$Gr^{\geq 0}_{k,n}$$ and conjecture that it induces a bijection from positroid dissections of the hypersimplex $$\Delta _{k+1,n}$$ to positroid dissections of the amplituhedron $$\mathcal{A}_{n,k,2}$$; we prove this conjecture for the (infinite) class of BCFW dissections. We note that T-duality is particularly striking because the hypersimplex is an $(n-1)$-dimensional polytope while the amplituhedron $$\mathcal{A}_{n,k,2}$$ is a $2k$-dimensional non-polytopal subset of the Grassmannian $$Gr_{k,k+2}$$. Moreover, we prove that the positive tropical Grassmannian is the secondary fan for the regular positroid subdivisions of the hypersimplex, and prove that a matroid polytope is a positroid polytope if and only if all 2D faces are positroid polytopes. Finally, toward the goal of generalizing T-duality for higher $$m$$, we define the momentum amplituhedron for any even $$m$$.  more » « less
Award ID(s):
2152991
PAR ID:
10580274
Author(s) / Creator(s):
; ;
Publisher / Repository:
International Mathematics Research Notices
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2023
Issue:
19
ISSN:
1073-7928
Page Range / eLocation ID:
16778 to 16836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The hypersimplex Δ<#comment/> k + 1 , n \Delta _{k+1,n} is the image of the positive Grassmannian G r k + 1 , n ≥<#comment/> 0 Gr^{\geq 0}_{k+1,n} under the moment map. It is a polytope of dimension n −<#comment/> 1 n-1 in R n \mathbb {R}^n . Meanwhile, the amplituhedron A n , k , 2 ( Z ) \mathcal {A}_{n,k,2}(Z) is the projection of the positive Grassmannian G r k , n ≥<#comment/> 0 Gr^{\geq 0}_{k,n} into the Grassmannian G r k , k + 2 Gr_{k,k+2} under a map Z ~<#comment/> \tilde {Z} induced by a positive matrix Z ∈<#comment/> M a t n , k + 2 > 0 Z\in Mat_{n,k+2}^{>0} . Introduced in the context ofscattering amplitudes, it is not a polytope, and has full dimension 2 k 2k inside G r k , k + 2 Gr_{k,k+2} . Nevertheless, there seem to be remarkable connections between these two objects viaT-duality, as conjectured by Łukowski, Parisi, and Williams [Int. Math. Res. Not. (2023)]. In this paper we use ideas from oriented matroid theory, total positivity, and the geometry of the hypersimplex and positroid polytopes to obtain a deeper understanding of the amplituhedron. We show that the inequalities cutting outpositroid polytopes—images of positroid cells of G r k + 1 , n ≥<#comment/> 0 Gr^{\geq 0}_{k+1,n} under the moment map—translate into sign conditions characterizing the T-dualGrasstopes—images of positroid cells of G r k , n ≥<#comment/> 0 Gr^{\geq 0}_{k,n} under Z ~<#comment/> \tilde {Z} . Moreover, we subdivide the amplituhedron intochambers, just as the hypersimplex can be subdivided into simplices, with both chambers and simplices enumerated by the Eulerian numbers. We use these properties to prove the main conjecture of Łukowski, Parisi, and Williams [Int. Math. Res. Not. (2023)]: a collection of positroid polytopes is a tiling of the hypersimplex if and only if the collection of T-dual Grasstopes is a tiling of the amplituhedron A n , k , 2 ( Z ) \mathcal {A}_{n,k,2}(Z) for all Z Z . Moreover, we prove Arkani-Hamed–Thomas–Trnka’s conjectural sign-flip characterization of A n , k , 2 \mathcal {A}_{n,k,2} , and Łukowski–Parisi–Spradlin–Volovich’s conjectures on m = 2 m=2 cluster adjacencyand onpositroid tilesfor A n , k , 2 \mathcal {A}_{n,k,2} (images of 2 k 2k -dimensional positroid cells which map injectively into A n , k , 2 \mathcal {A}_{n,k,2} ). Finally, we introduce new cluster structures in the amplituhedron. 
    more » « less
  2. Abstract We define and study the totally nonnegative part of the Chow quotient of the Grassmannian, or more simply thenonnegative configuration space. This space has a natural stratification bypositive Chow cells, and we show that nonnegative configuration space is homeomorphic to a polytope as a stratified space. We establish bijections between positive Chow cells and the following sets: (a) regular subdivisions of the hypersimplex into positroid polytopes, (b) the set of cones in the positive tropical Grassmannian, and (c) the set of cones in the positive Dressian. Our work is motivated by connections to super Yang–Mills scattering amplitudes, which will be discussed in a sequel. 
    more » « less
  3. Abstract We study totally nonnegative parts of critical varieties in the Grassmannian. We show that each totally nonnegative critical variety $$\operatorname{Crit}^{\geqslant 0}_f$$ is the image of an affine poset cyclohedron under a continuous map and use this map to define a boundary stratification of $$\operatorname{Crit}^{\geqslant 0}_f$$. For the case of the top-dimensional positroid cell, we show that the totally nonnegative critical variety $$\operatorname{Crit}^{\geqslant 0}_{k,n}$$ is homeomorphic to the second hypersimplex $$\Delta _{2,n}$$. 
    more » « less
  4. Leclerc and Zelevinsky, motivated by the study of quasi-commuting quantum flag minors, introduced the notions of strongly separated and weakly separated collections. These notions are closely related to the theory of cluster algebras, to the combinatorics of the double Bruhat cells, and to the totally positive Grassmannian. A key feature, called the purity phenomenon, is that every maximal by inclusion strongly (resp., weakly) separated collection of subsets in $[n]$ has the same cardinality. In this paper, we extend these notions and define $$\mathcal{M}$$-separated collections for any oriented matroid $$\mathcal{M}$$. We show that maximal by size $$\mathcal{M}$$-separated collections are in bijection with fine zonotopal tilings (if $$\mathcal{M}$$ is a realizable oriented matroid), or with one-element liftings of $$\mathcal{M}$$ in general position (for an arbitrary oriented matroid). We introduce the class of pure oriented matroids for which the purity phenomenon holds: an oriented matroid $$\mathcal{M}$$ is pure if $$\mathcal{M}$$-separated collections form a pure simplicial complex, i.e., any maximal by inclusion $$\mathcal{M}$$-separated collection is also maximal by size. We pay closer attention to several special classes of oriented matroids: oriented matroids of rank $$3$$, graphical oriented matroids, and uniform oriented matroids. We classify pure oriented matroids in these cases. An oriented matroid of rank $$3$$ is pure if and only if it is a positroid (up to reorienting and relabeling its ground set). A graphical oriented matroid is pure if and only if its underlying graph is an outerplanar graph, that is, a subgraph of a triangulation of an $$n$$-gon. We give a simple conjectural characterization of pure oriented matroids by forbidden minors and prove it for the above classes of matroids (rank $$3$$, graphical, uniform). 
    more » « less
  5. In 2005, Britto, Cachazo, Feng, and Witten gave a recurrence (now known as the BCFW recurrence) for computing scattering amplitudes inN= 4 super Yang–Mills theory. Arkani-Hamed and Trnka subsequently introduced the amplituhedron to give a geometric interpretation of the BCFW recurrence. Arkani-Hamed and Trnka conjectured that each way of iterating the BCFW recurrence gives a “triangulation” or “tiling” of the m=4 amplituhedron. In this article, we prove the BCFW tiling conjecture of Arkani-Hamed and Trnka. We also prove the cluster adjacency conjecture for BCFW tiles of the amplituhedron, which says that facets of tiles are cut out by collections of compatible cluster variables for the Grassmannian Gr4,n. Moreover we show that each BCFW tile is the subset of the Grassmannian where certain cluster variables have particular signs. 
    more » « less