Measurements of the -dependent flow vector fluctuations in Pb–Pb collisions at using azimuthal correlations with the ALICE experiment at the Large Hadron Collider are presented. A four-particle correlation approach [ALICE Collaboration, ] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the -dependent flow vector fluctuations at with two-particle correlations. Significant -dependent fluctuations of the flow vector in Pb–Pb collisions are found across different centrality ranges, with the largest fluctuations of up to being present in the 5% most central collisions. In parallel, no evidence of significant -dependent fluctuations of or is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than significance in central collisions. These observations in collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high , which might be biased by -dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be reexamined to improve our understanding of initial conditions, quark–gluon plasma properties, and the dynamic evolution of the created system. ©2024 CERN, for the ALICE Collaboration2024CERN
more »
« less
Vertical velocity of a small sphere in a sheared granular bed
Small particles fall through sheared beds of larger particles in settings ranging from geophysics to industry, but the study of large-to-small size ratios , spanning the trapping threshold has been neglected. In simulations of noncohesive spheres for the small-sphere vertical velocity first increases with shear rate as trapping time decreases, but then decreases as velocity fluctuations frustrate downward mobility. For is constant at low but again decreases at high . We model these behaviors and discuss analogies with electron transport in solids. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2203703
- PAR ID:
- 10580277
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 6
- Issue:
- 2
- ISSN:
- 2643-1564
- Page Range / eLocation ID:
- L022015
- Subject(s) / Keyword(s):
- granular segregation granular flows granular materials
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We employ first-principles quantum field theoretical methods to investigate the longitudinal and transverse electrical conductivities of a strongly magnetized hot quantum electrodynamics (QED) plasma at the leading order in coupling. The analysis employs the fermion damping rate in the Landau-level representation, calculated with full kinematics and exact amplitudes of one-to-two and two-to-one QED processes. In the relativistic regime, both conductivities exhibit an approximate scaling behavior described by , where are functions of the dimensionless ratio (with denoting temperature and magnetic field strength). We argue that the mechanisms for the transverse and longitudinal conductivities differ significantly, leading to a strong suppression of the former in comparison to the latter. Published by the American Physical Society2024more » « less
-
We measure the complete set of angular coefficients for exclusive decays ( , ). Our analysis uses the full Belle dataset with hadronic tag-side reconstruction. The results allow us to extract the form factors describing the transition and the Cabibbo-Kobayashi-Maskawa matrix element . Using recent lattice QCD calculations for the hadronic form factors, we find using the Boyd-Grinstein-Lebed parametrization, compatible with determinations from inclusive semileptonic decays. We search for lepton flavor universality violation as a function of the hadronic recoil parameter and investigate the differences of the electron and muon angular distributions. We find no deviation from standard model expectations. Published by the American Physical Society2024more » « less
-
A combination of searches for a new resonance decaying into a Higgs boson pair is presented, using up to of collision data at recorded with the ATLAS detector at the LHC. The combination includes searches performed in three decay channels: , , and . No excess above the expected Standard Model background is observed and upper limits are set at the 95% confidence level on the production cross section of Higgs boson pairs originating from the decay of a narrow scalar resonance with mass in the range 251 GeV–5 TeV. The observed (expected) limits are in the range 0.96–600 fb (1.2–390 fb). The limits are interpreted in the type-I two-Higgs-doublet model and the minimal supersymmetric standard model, and constrain parameter space not previously excluded by other searches. © 2024 CERN, for the ATLAS Collaboration2024CERNmore » « less
-
The ratio of branching fractions , where is an electron or muon, is measured using a Belle II data sample with an integrated luminosity of at the SuperKEKB asymmetric-energy collider. Data is collected at the resonance, and one meson in the decay is fully reconstructed in hadronic decay modes. The accompanying signal meson is reconstructed as using leptonic decays. The normalization decay, , produces the same observable final-state particles. The ratio of branching fractions is extracted in a simultaneous fit to two signal-discriminating variables in both channels and yields . This result is consistent with the current world average and with Standard Model predictions. Published by the American Physical Society2024more » « less
An official website of the United States government

