skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Oxidative Addition of (Hetero)aryl (Pseudo)halides at Palladium(0): Origin and Significance of Divergent Mechanisms
Two limiting mechanisms are possible for oxidative addition of (hetero)aryl (pseudo)halides at Pd(0): a 3-centered concerted and a nucleophilic displacement mechanism. Until now, there has been little understanding about when each mechanism is relevant. Prior investigations to distinguish between these pathways were limited to a few specific combinations of substrate and ligand. Here, we computationally evaluated over 180 transition structures for oxidative addition in order to determine mechanistic trends based on substrate, ligand(s), and coordination number. Natural abundance 13C kinetic isotope effects pro-vide experimental results consistent with computational predictions. Key findings include that (1) differences in HOMO symmetries dictate that, although 12e– PdL is strongly biased toward a 3-centered concerted mechanism, 14e– PdL2 often prefers a nucleophilic displacement mechanism; (2) ligand electronics and sterics, including ligand bite angle, influence the preferred mechanism of reaction at PdL2; (3) phenyl triflate always reacts through a displacement mechanism regardless of catalyst structure due to the stability of a triflate anion and the inability of oxygen to effectively donate electron density to Pd; and (4) the high reactivity of C—X bonds adjacent to nitrogen in pyridine substrates relates to stereoelectronic stabilization of a nucleophilic displacement transition state. This work has implications for controlling rate and selectivity in catalytic couplings, and we demonstrate application of the mechanistic insight toward chemodivergent cross-couplings of bromochloroheteroarenes.  more » « less
Award ID(s):
1848090 2400070
PAR ID:
10580318
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
146
Issue:
28
ISSN:
0002-7863
Page Range / eLocation ID:
19249 to 19260
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reaction solvent was previously shown to influence the selectivity of Pd/PtBu3-catalyzed Suzuki-Miyaura cross-couplings of chloroaryl triflates. The role of solvents has been hypothesized to relate to their polarity, whereby polar solvents stabilize anionic transition states involving [Pd(PtBu3)(X)]– (X = anionic ligand) and nonpolar solvents do not. However, here we report detailed studies that reveal a more complicated mechanistic picture. In particular, these results suggest that the selectivity change observed in certain solvents is primarily due to solvent coordination to palladium. Polar coordinating and polar noncoordinating solvents lead to dramatically different selectivity. In coordinating solvents, preferential reaction at triflate is likely catalyzed by Pd(PtBu3)(solv), whereas noncoordinating solvents lead to reaction at chloride through monoligated Pd(PtBu3). The role of solvent coordination is supported by stoichiometric oxidative addition experiments, density functional theory (DFT) calculations, and catalytic cross-coupling studies. Additional results suggest that anionic [Pd(PtBu3)(X)]– is also relevant to triflate selectivity in certain scenarios, particularly when halide anions are available in high concentrations. 
    more » « less
  2. Silyl palladium cations (R3P)2Pd–SiR3+ catalyze the ring opening, C–C bond forming, and functionalization of 5- and 6-membered cyclic allyl ethers with O-silyl nucleophiles. Conditions for high regio-control are achieved by adjustments in the phosphine electronics, with the identity of the 2-substituent also influencing the functionalization location in unsymmetrical furans. Allyl alcohols are obtained with a regio-preference for terminal addition with unsubstituted ethers with E-products being obtained with XantPhos and Z- with (4-CF3–Ar)3 ligation. Styrenes dominate with phenyl-substituted dihydrofurans, and for 2-alkyl-substituted, secondary alcohols result from an allyl migration pathway. Mechanistic studies demonstrate the feasibility of Pd–Si+ bonds to facilitate C–O activation to yield π-allyl intermediates, and for one substrate class to also sequence π-allyl migration prior to nucleophilic addition. DFT calculations demonstrated the viability of silylium-activated ether as a competent ligand for Pd(0). 
    more » « less
  3. Abstract The search for more effective and highly selective C–H bond oxidation of accessible hydrocarbons and biomolecules is a greatly attractive research mission. The elucidating of mechanism and controlling factors will, undoubtedly, help to broaden scope of these synthetic protocols, and enable discovery of more efficient, environmentally benign, and highly practical new C–H oxidation reactions. Here, we reveal the stepwise intramolecular SN2 nucleophilic substitution mechanism with the rate-limiting C–O bond formation step for the Pd(II)-catalyzed C(sp3)–H lactonization in aromatic 2,6-dimethylbenzoic acid. We show that for this reaction, the direct C–O reductive elimination from both Pd(II) and Pd(IV) (oxidized by O2oxidant) intermediates is unfavorable. Critical factors controlling the outcome of this reaction are the presence of the η3-(π-benzylic)–Pd and K+–O(carboxylic) interactions. The controlling factors of the benzylic vs ortho site-selectivity of this reaction are the: (a) difference in the strains of the generated lactone rings; (b) difference in the strengths of the η3-(π-benzylic)–Pd and η2-(π-phenyl)–Pd interactions, and (c) more pronounced electrostatic interaction between the nucleophilic oxygen and K+cation in the ortho-C–H activation transition state. The presented data indicate the utmost importance of base, substrate, and ligand in the selective C(sp3)–H bond lactonization in the presence of C(sp2)–H. 
    more » « less
  4. null (Ed.)
    A new biaryl phosphine-containing ligand from an active palladium catalyst for ppm level Suzuki–Miyaura couplings, enabled by an aqueous micellar reaction medium. A wide array of functionalized substrates including aryl/heteroaryl bromides are amenable, as are, notably, chlorides. The catalytic system is both general and highly effective at low palladium loadings (1000–2500 ppm or 0.10–0.25 mol%). Density functional theory calculations suggest that greater steric congestion in N 2 Phos induces increased steric crowding around the Pd center, helping to destabilize the 2 : 1 ligand–Pd(0) complex more for N 2 Phos than for EvanPhos (and less bulky ligands), and thereby favoring formation of the 1 : 1 ligand–Pd o complex that is more reactive in oxidative addition to aryl chlorides. 
    more » « less
  5. Zn II and Fe II chloride complexes of a di(methylthiazolidinyl)pyridine ligand were deprotonated to form the corresponding thiolate complexes supported by redox-active iminopyridine moieties. The thiolate donor groups are nucleophilic and reactive toward oxidants, electrophiles, and protons, while the pendant thiazolidine rings are available for hydrogen bonding. Anion exchange with the weakly-coordinating triflate anion resulted in self-assembly of the iminopyridine complexes to form a trimeric [M 3 S 3 ] cluster. Hydrogen bonding closely associates anions with this trimetallic core. 
    more » « less