skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Performance metrics for resilience of airport infrastructure
Recent disruptions in transportation systems resulting from natural disasters, cyber accidents, and other factors clearly show the fragility of the airports and underscore the need for building resilience. This study introduces a comprehensive framework for evaluating the resilience of airport infrastructure, integrating critical functions and performance indicators in the context of specific missions that the airport needs to achieve. By focusing on the Dallas-Fort Worth International Airport (DFW) as a case study, the paper outlines a multi-criteria decision analysis (MCDA) methodology for identifying and assessing the critical functions of airports as well as their ability to recover and adapt under different threat scenarios including threat-agnostic situation. The methodology and its application to the DFW case study offer insights into the resilience of airport operations, highlighting key areas for improvement and the potential for policy intervention. This study provides a robust tool for airport administrators and policymakers to enhance infrastructure resilience through a detailed analysis and visualization of airport performance indicators, thereby contributing to the broader discourse on transportation system sustainability and disaster preparedness.  more » « less
Award ID(s):
2402580
PAR ID:
10580369
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Transportation Research Part D: Transport and Environment
ISSN:
1361-9209
Page Range / eLocation ID:
104676
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Airports facilitate the fastest mode of transportation and connect local communities and businesses with national and international destinations. The American Society of Civil Engineers (ASCE) 2021 infrastructure report card rated the aviation infrastructure category with a D+. This highlights the need for frequent monitoring and performing timely preservation techniques to ensure the optimal performance of the asset. The Texas Department of Transportation (TxDOT) periodically inspects the regional airports in Texas through visual surveys and estimates the pavement condition index (PCI) for each airport on a network scale. These ratings are used to assess the need for rehabilitation in a timely manner. In this study, an attempt was made to use an unmanned aerial vehicle (UAV) mounted with an optical camera to inspect and evaluate the condition of various airport assets. Several observations were outlined to conduct a safe inspection of airport assets using UAVs. A comparison of PCI values, grouped into three categories, obtained from traditional and aerial inspections was made to understand the feasibility of using this new technology for airport asset management. It was observed that both inspections classified most of the airport assets similarly. The traditional inspection was observed to be quicker as it requires inspection of only sampled units, however, UAV data processing takes a relatively long time to offer a comprehensive digital footprint and immersive visualization experience of the whole airport assets. Overall, UAVs are identified to have a great potential as a data collection tool supplementary to the current traditional practices. 
    more » « less
  2. Understanding the characteristics of air-traffic delays and disruptions is critical for developing ways to mitigate their significant economic and environmental impacts. Conventional delay-performance metrics reflect only the magnitude of incurred flight delays at airports; in this work, we show that it is also important to characterize the spatial distribution of delays across a network of airports. We analyze graph-supported signals, leveraging techniques from spectral theory and graph-signal processing to compute analytical and simulation-driven bounds for identifying outliers in spatial distribution. We then apply these methods to the case of airport-delay networks and demonstrate the applicability of our methods by analyzing U.S. airport delays from 2008 through 2017. We also perform an airline-specific analysis, deriving insights into the delay dynamics of individual airline subnetworks. Through our analysis, we highlight key differences in delay dynamics between different types of disruptions, ranging from nor’easters and hurricanes to airport outages. We also examine delay interactions between airline subnetworks and the system-wide network and compile an inventory of outlier days that could guide future aviation operations and research. In doing so, we demonstrate how our approach can provide operational insights in an air-transportation setting. Our analysis provides a complementary metric to conventional aviation-delay benchmarks and aids airlines, traffic-flow managers, and transportation-system planners in quantifying off-nominal system performance. 
    more » « less
  3. Abstract Failures within water distribution systems are usually not isolated and tend to propagate to corresponding transportation infrastructure, yet most criticality and resilience analyses of water distribution networks are conducted for the individual water infrastructure without accounting for interdependence. To address this research gap, this study investigates how the critical components identified within water distribution systems may be different when accounting for failure propagation to the transportation road network. In this study, failure propagation is assumed to be based on geospatial interdependence and unidirectional, starting from water distribution network components to transportation network components. A logical interaction network is constructed considering the interdependence between both infrastructures, and multiobjective optimization is used to solve for the critical water distribution components considering: quantity of failures, performance loss, and financial costs. This work presents a modular workflow for water distribution criticality analysis and proposes the Kolmogorov‐Smirnov distance statistic between solution sets as a measure of the significance of interdependency for decision making. Results from the case study suggest that as the magnitude of water infrastructure failure increases beyond a threshold, the interdependency between water distribution and transportation becomes more significant. The difference between identified critical components using only information from water distribution and using both water distribution and transportation is significantly different (with greater than 95% confidence) for the city of Tampa, when more than 40 components fail (are isolated). These results will assist utilities in asset management and strategy assessment, by helping prioritize component repair and better allocate resources for critical interdependent infrastructures. 
    more » « less
  4. The impact of climate change and the dynamic nature of environmental conditions underscore the critical need to enhance resilience of systems and process safety considerations. The efficacy of such efforts primarily depends on how resilience is measured. Among the myriad efforts to quantify resilience, composite indicators have emerged as promising tools. However, these indicators typically employ statistical methods to derive weights for aggregation and rely on statistical homogeneity among indicators which can limit their scope and fidelity. In this study, we propose an alternative novel resilience index derived from a system’s structure and the essential conditions for safe operation during and after disruptions. The proposed measure reflects the systems’ ability to resist and respond to failures by addressing possibilities of impact propagation to other infrastructure systems. Moreover, it eliminates the need for weights and allows for compensability among its leading indicators. Using a case study based on the on-site wastewater treatment and disposal systems (OSTDS) in South Florida that faces increasing risks due to rising sea levels, we investigate the validity of the proposed index and perform a comparative analysis with statistically-driven measures. Furthermore, we demonstrate the adaptation of the proposed index for decision making within a generalized optimization framework. 
    more » « less
  5. ObjectiveThe objectives of this study were to examine (1) the linkage from airports to regional talent distribution and (2) the effect of talent on regional economic development. MethodsUsing the data collected in Wisconsin at the municipal level, a subcounty level, in a region of the North Central United States from 1970 to 2010 and the American Community Survey 2006–2010 five‐year estimates, and random effects models and structural equation models, we employ descriptive and inferential statistics to examine the linkage from airports to talent to regional economic development. ResultsWe find that the farther a location is away from the airport, the lower its talent share tends to be, while greater passenger flow at the nearest airport increases a location's talent share. Given the quantity of passenger flow, a longer distance from the airport also reduces a location's talent share. The results furthermore suggest that economic development is impacted positively by passenger flow and talent share and negatively by distance to an airport. ConclusionOur results underscore the intermediate role of talent between airports and regional economic development; building the linkage from airports to talent within the context of regional economic development provides important insights for local policy making aimed at attracting talented migrants. 
    more » « less