skip to main content


This content will become publicly available on September 1, 2024

Title: Operationalizing resilience: A deductive fault-driven resilience index for enabling adaptation
The impact of climate change and the dynamic nature of environmental conditions underscore the critical need to enhance resilience of systems and process safety considerations. The efficacy of such efforts primarily depends on how resilience is measured. Among the myriad efforts to quantify resilience, composite indicators have emerged as promising tools. However, these indicators typically employ statistical methods to derive weights for aggregation and rely on statistical homogeneity among indicators which can limit their scope and fidelity. In this study, we propose an alternative novel resilience index derived from a system’s structure and the essential conditions for safe operation during and after disruptions. The proposed measure reflects the systems’ ability to resist and respond to failures by addressing possibilities of impact propagation to other infrastructure systems. Moreover, it eliminates the need for weights and allows for compensability among its leading indicators. Using a case study based on the on-site wastewater treatment and disposal systems (OSTDS) in South Florida that faces increasing risks due to rising sea levels, we investigate the validity of the proposed index and perform a comparative analysis with statistically-driven measures. Furthermore, we demonstrate the adaptation of the proposed index for decision making within a generalized optimization framework.  more » « less
Award ID(s):
2115275
NSF-PAR ID:
10477528
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Process Safety and Environmental Protection
Volume:
177
Issue:
C
ISSN:
0957-5820
Page Range / eLocation ID:
1085 to 1102
Subject(s) / Keyword(s):
["Resilience metric","Composite index","Leading indicators","Sea-level rise","Adaptation","Decentralized wastewater treatment systems"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Resilience is the ability of ecosystems to maintain function while experiencing perturbation. Globally, forests are experiencing disturbances of unprecedented quantity, type, and magnitude that may diminish resilience. Early warning signals are statistical properties of data whose increase over time may provide insights into decreasing resilience, but there have been few applications to forests. We quantified four early warning signals (standard deviation, lag-1 autocorrelation, skewness, and kurtosis) across detrended time series of multiple ecosystem state variables at the Hubbard Brook Experimental Forest, New Hampshire, USA and analyzed how these signals have changed over time. Variables were collected over periods from 25 to 55 years from both experimentally manipulated and reference areas and were aggregated to annual timesteps for analysis. Long-term (>50 year) increases in early warning signals of stream calcium, a key biogeochemical variable at the site, illustrated declining resilience after decades of acid deposition, but only in watersheds that had previously been harvested. Trends in early warning signals of stream nitrate, a critical nutrient and water pollutant, likewise exhibited symptoms of declining resilience but in all watersheds. Temporal trends in early warning signals of some of groups of trees, insects, and birds also indicated changing resilience, but this pattern differed among, and even within, groups. Overall, ∼60% of early warning signals analyzed indicated decreasing resilience. Most of these signals occurred in skewness and kurtosis, suggesting ‘flickering’ behavior that aligns with emerging evidence of the forest transitioning into an oligotrophic condition. The other ∼40% of early warning signals indicated increasing or unchanging resilience. Interpretation of early warning signals in the context of system specific knowledge is therefore essential. They can be useful indicators for some key ecosystem variables; however, uncertainties in other variables highlight the need for further development of these tools in well-studied, long-term research sites.

     
    more » « less
  2. The atmospheric water supply and demand dynamics determine a region’s potential water resources. The hydrologic ratios, such as, aridity index, evaporation ratio and runoff coefficients are useful indicators to quantify the atmospheric water dynamics at watershed to regional scales. In this study, we developed a modeling framework using a machine learning approach to predict hydrologic ratios for watersheds located in contiguous United States (CONUS) by utilizing a set of climate, soil, vegetation, and topographic variables. Overall, the proposed modeling framework is able to simulate the hydrologic ratios at watershed scale with a considerable accuracy. The concept of non-parametric elasticity was applied to study the potential influence of the estimated hydrologic ratios on various drought characteristics (resilience, vulnerability, and exposure) for river basins located in CONUS. Spatial sensitivity of drought indicators to hydrologic ratios suggests that an increase in hydrologic ratios may result in augmentation of magnitude of drought indicators in majority of the river basins. Aridity index seems to have higher influence on drought characteristics in comparison to other hydrologic ratios. It was observed that the machine learning approach based on random forests algorithm can efficiently estimate the spatial distribution of hydrologic ratios provided sufficient data is available. In addition to that, the non-parametric based elasticity approach can identify the potential influence of hydrologic ratios on spatial drought characteristics. 
    more » « less
  3. null (Ed.)
    Interconnected food, energy, and water (FEW) nexus systems face many challenges to support human well-being (HWB) and maintain resilience, especially in arid and semiarid regions like New Mexico (NM), United States (US). Insufficient FEW resources, unstable economic growth due to fluctuations in prices of crude oil and natural gas, inequitable education and employment, and climate change are some of these challenges. Enhancing the resilience of such coupled socio-environmental systems depends on the efficient use of resources, improved understanding of the interlinkages across FEW system components, and adopting adaptable alternative management strategies. The goal of this study was to develop a framework that can be used to enhance the resilience of these systems. An integrated food, energy, water, well-being, and resilience (FEW-WISE) framework was developed and introduced in this study. This framework consists mainly of five steps to qualitatively and quantitatively assess FEW system relationships, identify important external drivers, integrate FEW systems using system dynamics models, develop FEW and HWB performance indices, and develop a resilience monitoring criterion using a threshold-based approach that integrates these indices. The FEW-WISE framework can be used to evaluate and predict the dynamic behavior of FEW systems in response to environmental and socioeconomic changes using resilience indicators. In conclusion, the derived resilience index can be used to inform the decision-making processes to guide the development of alternative scenario-based management strategies to enhance the resilience of ecological and socioeconomic well-being of vulnerable regions like NM. 
    more » « less
  4. There has been a growing interest in research on how to define and build indicators of resilience to address challenges associated with sea-level rise. Most of the proposed methods rely on lagging indicators constructed based on the historical performance of an infrastructure sub-system. These indicators are traditionally utilized to build curves that describe the past response of the sub-system to stressors; these curves are then used to predict the future resilience of the sub-system to hypothesized events. However, there is now a growing concern that this approach cannot provide the best insights for adaptive decision-making across the broader context of multiple sub-systems and stakeholders. As an alternative, leading indicators that are built on the structural characteristics that embody system resilience have been gaining in popularity. This structure-based approach can reveal problems and gaps in resilience planning and shed light on the effectiveness of potential adaptation activities. Here, we survey the relevant literature for these leading indicators within the context of sea-level rise and then synthesize the gained insights into a broader examination of the current research challenges. We propose research directions on leveraging leading indicators as effective instruments for incorporating resilience into integrated decision-making on the adaptation of infrastructure systems. 
    more » « less
  5. Abstract

    Global food systems must be a part of strategies for greenhouse gas (GHG) mitigation, optimal water use, and nitrogen pollution reduction. Insights from research in these areas can inform policies to build sustainable food systems yet limited work has been done to build understanding around whether or not sustainability efforts compete with supply chain resilience. This study explores the interplay between food supply resilience and environmental impacts in US cities, within the context of global food systems’ contributions to GHG emissions, water use, and nitrogen pollution. Utilizing county-level agricultural data, we assess the water use, GHG emissions, and nitrogen losses of urban food systems across the US, and juxtapose these against food supply resilience, represented by supply chain diversity. Our results highlight that supply chain resilience and sustainability can simultaneously exist and are not necessarily in competition with each other. We also found a significant per capita footprint in the environmental domains across Southern cities, specifically those along the Gulf Coast and southern Great Plains. Food supply chain resilience scores ranged from 0.18 to 0.69, with lower scores in the southwest and Great Plains, while northeastern and Midwestern regions demonstrated higher resilience. We found several cities with high supply chain resilience and moderate or low environmental impacts as well as areas with high impacts and low resilience. This study provides insights into potential trade-offs and opportunities for creating sustainable urban food systems in the US, underscoring the need for strategies that consider both resilience and environmental implications.

     
    more » « less