skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bubble ascent and rupture in mud volcanoes
Large gas bubbles can reach the surface of pools of mud and lava where they burst, often through the formation and expansion of circular holes. Bursting bubbles release volatiles and generate spatter, and hence play a key role in volcanic degassing and volcanic edifice construction. Here, we study the ascent and rupture of bubbles using a combination of field observations at Pâclele Mici (Romania), laboratory experiments with mud from the Imperial Valley (California, USA), numerical simulations and theoretical models. Numerical simulations predict that bubbles ascend through the mud as elliptical caps that develop a dimple at the apex as they impinge on the free surface. We documented the rupture of bubbles in nature and under laboratory conditions using high-speed video. The bursting of mud bubbles starts with the nucleation of multiple holes, which form at a near-constant rate and in quick succession. The quasi-circular holes rapidly grow and coalesce, and the sheet evolves towards a filamentous structure that finally falls back into the mud pool, sometimes breaking up into droplets. The rate of expansion of holes in the sheet can be explained by a generalization of the Taylor–Culick theory, which is shown to hold independent of the fluid rheology.  more » « less
Award ID(s):
2116573
PAR ID:
10580412
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Royal Society Publishing
Date Published:
Journal Name:
Royal Society Open Science
Volume:
11
Issue:
7
ISSN:
2054-5703
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Air bubbles at the surface of water end their life in a particular way: when bursting, they may eject drops of liquid in the surrounding environment. Many uncertainties remain regarding collective effects of bubbles at the water–air interface, despite extensive efforts to describe the bursting mechanisms, motivated by their critical importance in mass transfers between the ocean and the atmosphere in the production of sea spray aerosols. We investigate the effect of surfactant on the collective dynamics and statistics of air bubbles evolving freely at the surface of water, through an experimental set-up controlling the bulk distribution of bubbles with nearly monodisperse millimetric air bubbles. We observe that for low contamination, bubble coalescence is inevitable and leads to a broad surface size distribution. For higher surfactant concentrations, coalescence at the surface is prevented and bubble lifetime is increased, leading to the formation of rafts with a surface size distribution identical to the bulk distribution. This shows that surface contamination has a first-order influence on the transfer function from bulk size distribution to surface size distribution, an intermediate step which needs to be considered when developing sea spray source function as droplet production by bubble bursting depends on the bubble size. We measure the bursting and merging rates of bubbles as a function of contamination through a complementary freely decaying raft experiment. We propose a cellular automaton model that includes the minimal ingredients to reproduce the experimental results in the statistically stationary configuration: production, coalescence and bursting after a finite lifetime. 
    more » « less
  2. Abstract Gas bubbles bursting at the sea surface produce drops, which contribute to marine aerosols. The contamination or enrichment of water by surface‐active agents, of biological or anthropogenic origin, has long been recognized as affecting the bubble bursting processes and the spray composition. However, despite an improved understanding of the physics of a single bursting event, a quantitative understanding of the role of the physico‐chemical conditions on assemblies of bursting bubbles remains elusive. We present experiments on the drop production by millimetric, collective bursting bubbles, under varying surfactant concentration and bubble density. We demonstrate that the production of supermicron droplets (with radius larger than 35 μm) is non‐monotonic as the surfactant concentration increases. The bursting efficiency is optimal for short‐lived, sparsely distributed and non‐coalescing bubbles. We identify the combined role of contamination on the surface bubble arrangement and the modification of the jet drop production process in the bursting efficiency. 
    more » « less
  3. Abstract Pyroclasts typically exhibit coalesced vesicle textures, which are the evidence of bubble coalescence and the incomplete bubble wall retraction in magma during volcanic eruptions. The sizes of bubble throats or inter‐bubble apertures in permeable networks control the extent of magma outgassing, and therefore, quantifying the growth rates of the bubble throats is important but has remained poorly constrained. Using dynamically similar experiments with spontaneous bursting of a single bubble in rheologically well‐characterized particulate suspensions, we investigate the growth rate of bubble throats for a range of particle volume fractions. For suspensions with 0.50 particle volume fraction, a circular hole (bubble throat) forms following bubble bursting, which after an initial fast growth starts plateauing at a throat‐bubble size ratio of 0.20. The throat growth time scale overall increases with increasing particle volume fraction due to the increase in suspension viscosity. On the other hand, bubbles in suspensions with particle volume fraction near the maximum packing fraction (0.64) exhibit a fracture‐like opening. Thus, our experimental results suggest that the plateauing of the bubble throat growth in crystal‐poor to crystal‐rich magma likely contributes to the wide occurrence of the incompletely retracted vesicle walls in pyroclasts. The implications of the flow‐ to fracture‐like growth of bubble throats on the development of dynamic permeability in magma are discussed. 
    more » « less
  4. Abstract Bubbles bursting at the ocean surface are an important source of ocean‐spray aerosol, with implications on radiative and cloud processes. Yet, very large uncertainties exist on the role of key physical controlling parameters, including wind speed, sea state and water temperature. We propose a mechanistic sea spray generation function that is based on the physics of bubble bursting. The number and mean droplet radius of jet and film drops is described by scaling laws derived from individual bubble bursting laboratory and numerical experiments, as a function of the bubble radius and the water physico‐chemical properties (viscosity, density and surface tension, all functions of temperature), with drops radii at production from 0.1 to 500 µm. Next, we integrate over the bubble size distribution entrained by breaking waves. Finally, the sea spray generation function is obtained by considering the volume flux of entrained bubbles due to breaking waves in the field constrained by the third moment of the breaking distribution (akin to the whitecap coverage). This mechanistic approach naturally integrates the role of wind and waves via the breaking distribution and entrained air flux, and a sensitivity to temperature via individual bubble bursting mechanisms. The resulting sea spray generation function has not been tuned or adjusted to match any existing data sets, in terms of magnitude of sea salt emissions and recently observed temperature dependencies. The remarkable coherence between the model and observations of sea salt emissions therefore strongly supports the mechanistic approach and the resulting sea spray generation function. 
    more » « less
  5. The rise of the Halemaʻumaʻu lava lake in 2013–2018 to depths commonly 40 meters or less below the rim of the vent was an excellent opportunity to study outgassing and the link to associated eruptive activity. We use videography to investigate the rise and bursting of bubbles through the free surface of the lake in 2015. We focus on low-energy explosive activity (spattering) in which the ascent and bursting of meter-sized, mechanically decoupled bubbles trigger the ejection of fluidal bombs to tens of meters above the free surface. A decay in initial pyroclast velocity with time follows the same functional form as that observed for ejecta at Stromboli (Italy), suggesting a similar bubble-burst mechanism. 
    more » « less