skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 25, 2025

Title: Social Network Influence on Residential Solar Photovoltaic Adoption in an Agent-Based Electricity System Model
Abstract As the United States phases out traditional fossil fuels in favor of renewable energy sources, it is important to capitalize on all available avenues to increase renewable penetration. In the last decade, the costs associated with residential solar photovoltaic (PV) installations have decreased significantly, providing more homeowners with the opportunity to generate their own clean electricity. Research has found that the decision to invest in a residential solar PV system is guided by economic, social, and personal factors. Accounting for such complexities, the joint power of agent-based modeling and social network analysis is leveraged in this study to evaluate the effect of social influence on solar PV adoption. Featuring residential consumer agents with data-driven attributes, a logistic regression function to predict solar adoption, and random and small-world social network implementations, this work simulates residential solar PV adoption in New Jersey. Results indicate that including social influence in an agent-based electricity system model leads to increased installed residential solar capacity, but not necessarily higher adoption rates. These findings suggest that, with an understanding of the intricacies of consumer social networks, there are potential opportunities to bolster residential solar installations through low-cost social campaigns that motivate individuals to adopt home solar through their social ties.  more » « less
Award ID(s):
1953774
PAR ID:
10580417
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
ISBN:
978-0-7918-8837-7
Format(s):
Medium: X
Location:
Washington, DC, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Solar energy has the potential to offset a significant fraction of non-renewable electricity demands globally, yet it may occupy extensive areas when deployed at this level. There is growing concern that large renewable energy installations will displace other land uses. Where should future solar power installations be placed to achieve the highest energy production and best use the limited land resource? The premise of this work is that the solar panel efficiency is a function of the location’s microclimate within which it is immersed. Current studies largely ignore many of the environmental factors that influence Photovoltaic (PV) panel function. A model for solar panel efficiency that incorporates the influence of the panel’s microclimate was derived from first principles and validated with field observations. Results confirm that the PV panel efficiency is influenced by the insolation, air temperature, wind speed and relative humidity. The model was applied globally using bias-corrected reanalysis datasets to map solar panel efficiency and the potential for solar power production given local conditions. Solar power production potential was classified based on local land cover classification, with croplands having the greatest median solar potential of approximately 28 W/m2. The potential for dual-use, agrivoltaic systems may alleviate land competition or other spatial constraints for solar power development, creating a significant opportunity for future energy sustainability. Global energy demand would be offset by solar production if even less than 1% of cropland were converted to an agrivoltaic system. 
    more » « less
  2. The state of California is the foremost leader in solar photovoltaics (PV) installations in the United States. With 1,390,240 installations and 24.76% of the state's energy coming from solar, the demand for PV modules is steadily increasing. Most PV modules have an expected lifetime of 25-30 years. However, due to repowering or early module failure, module lifetime can often be shorter than anticipated. Current studies calculate the environmental impact of PV systems based on ideal installation conditions and a full 25-year module lifetime. This study considers the impact on the life cycle of PV systems from early PV module retirement and actual system installation in California. Using the life cycle cumulative energy demand, electricity data from the Energy Information Administration (EIA), and greenhouse gases, carbon payback time (CPBT) was evaluated. Data from various PV module rooftop residential installations in 2019 were collected from the California NEM database. Information on the system design (tilt, azimuth, module model) and module specification sheets were used to calculate the cumulative electricity generated in kilowatt-hours (kWh) over the system' lifetime. The calculated average CPBT was 2.8 years, shorter than most of the system lifetimes, and the mean number of zero carbon years experienced by earlier retired systems was about 5 years. Although the rapid movement towards solar energy is promising and essential as reliance on greener energy increases, attention must be paid to the diverse lifespans of PV modules, system design, and performance to substantiate or reject the assumption that PV always have a positive impact on the environment. 
    more » « less
  3. Solar energy has the potential to offset a significant fraction of non-renewable electricity demands globally, yet it may occupy extensive areas when deployed at this level. There is growing concern that large renewable energy installations will displace other land uses. Where should future solar power installations be placed to achieve the highest energy production and best use the limited land resource? The premise of this work is that the solar panel efficiency is a function of the location’s microclimate within which it is immersed. Current studies largely ignore many of the environmental factors that influence Photovoltaic (PV) panel function. A model for solar panel efficiency that incorporates the influence of the panel’s microclimate was derived from first principles and validated with field observations. Results confirm that the PV panel efficiency is influenced by the insolation, air temperature, wind speed and relative humidity. The model was applied globally using bias-corrected reanalysis datasets to map solar panel efficiency and the potential for solar power production given local conditions. Solar power production potential was classified based on local land cover classification, with croplands having the greatest median solar potential of approximately 28 W/m2. The potential for dual-use, agrivoltaic systems may alleviate land competition or other spatial constraints for solar power development, creating a significant opportunity for future energy sustainability. Global energy demand would be offset by solar production if even less than 1% of cropland were converted to an agrivoltaic system. 
    more » « less
  4. Abstract The climate crisis and associated push for distributed, renewable electricity generation necessitate policy changes to decarbonize and modernize the electricity grid. Some of these changes—e.g., smart meter rollouts and tax credits for solar panel adoption—have received attention in the media and from social scientists to understand public perceptions and responses. Others—e.g., allowing peer‐to‐peer electricity sales, promoting residential electrification, requiring solar panels on new development, funding microgrids, and paying customers to allow for utility control of electricity use—have received less attention. Here, we explore public perceptions of these understudied policies among California residents (n = 804), a state recognized for innovative energy policy. A majority of respondents supported only one of the policies—requiring solar panels on new development. Others elicited more indecision; few were strongly opposed. In general, male respondents and those with college degrees were more supportive of such policies, as were those more concerned about climate change and with a more open orientation to smart home technologies. 
    more » « less
  5. Abstract High fractions of variable renewable electricity generation have challenged grid management within the balancing authority overseen by the California’s Independent System Operator (CAISO). In the early evening, solar resources tend to diminish as the system approaches peak demand, putting pressure on fast-responding, emissions-intensive natural gas generators. While residential precooling, a strategy intended to shift the timing of air-conditioning usage from peak-demand periods to cheaper off-peak periods, has been touted in the literature as being effective for reducing peak electricity usage and costs, we explore its impact on CO2emissions in regional grids like CAISO that have large disparities in their daytime versus nighttime emissions intensities. Here we use EnergyPlus to simulate precooling in a typical U.S. single-family home in California climate zone 9 to quantify the impact of precooling on peak electricity usage, CO2emissions, and residential utility costs. We find that replacing a constant-setpoint cooling schedule with a precooling schedule can reduce peak period electricity consumption by 57% and residential electricity costs by nearly 13%, while also reducing CO2emissions by 3.5%. These results suggest the traditional benefits of precooling can be achieved with an additional benefit of reducing CO2emissions in grids with high daytime renewable energy penetrations. 
    more » « less