skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 31, 2026

Title: Fabricating Silver Nanowire–IZO Composite Transparent Conducting Electrodes at Roll-to-Roll Speed for Perovskite Solar Cells
This study addresses the challenges of efficient, large-scale production of flexible transparent conducting electrodes (TCEs). We fabricate TCEs on polyethylene terephthalate (PET) substrates using a high-speed roll-to-roll (R2R) compatible method that combines gravure printing and photonic curing. The hybrid TCEs consist of Ag metal bus lines (Ag MBLs) coated with silver nanowires (AgNWs) and indium zinc oxide (IZO) layers. All materials are solutions deposited at speeds exceeding 10 m/min using gravure printing. We conduct a systematic study to optimize coating parameters and tune solvent composition to achieve a uniform AgNW network. The entire stack undergoes photonic curing, a low-energy annealing method that can be completed at high speeds and will not damage the plastic substrates. The resulting hybrid TCEs exhibit a transmittance of 92% averaged from 400 nm to 1100 nm and a sheet resistance of 11 Ω/sq. Mechanical durability is tested by bending the hybrid TCEs to a strain of 1% for 2000 cycles. The results show a minimal increase (<5%) in resistance. The high-throughput potential is established by showing that each hybrid TCE fabrication step can be completed at 30 m/min. We further fabricate methylammonium lead iodide solar cells to demonstrate the practical use of these TCEs, achieving an average power conversion efficiency (PCE) of 13%. The high-performance hybrid TCEs produced using R2R-compatible processes show potential as a viable choice for replacing vacuum-deposited indium tin oxide films on PET.  more » « less
Award ID(s):
2135203
PAR ID:
10580466
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Nanomanufacturing
Volume:
5
Issue:
2
ISSN:
2673-687X
Page Range / eLocation ID:
5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Article“Green” Fabrication of High-performance Transparent Conducting Electrodes by Blade Coating and Photonic Curing on PET for Perovskite Solar CellsJustin C. Bonner 1,†, Robert T. Piper 1,†, Bishal Bhandari 2, Cody R. Allen 2, Cynthia T. Bowers 3,4, Melinda A. Ostendorf 3,4, Matthew Davis 5, Marisol Valdez 6, Mark Lee 2 and Julia W. P. Hsu 1,∗1 Department of Materials Science and Engineering, University of Texas at Dallas, 800 W Campbell Road, RL-10, Richardson, TX 75080, USA2 Department of Physics, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA3 Materials Characterization Facility at the Air Force Research Laboratory, 2941 Hobson Way, WPAFB, OH 45433, USA4 UES, Inc., a BlueHalo Company, 4401 Dayton-Xenia Rd, Dayton, OH 45432, USA5 Energy Materials Corporation, 1999 Lake Ave B82 Ste B304, Rochester, NY 14650, USA6 Department of Chemistry, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA* Correspondence: jwhsu@utdallas.edu† These authors contributed equally to this work.Received: 30 September 2024; Revised: 25 October 2024; Accepted: 30 October 2024; Published: 5 November 2024Abstract: This study presents an innovative material processing approach to fabricate transparent conducting electrodes (TCEs) on polyethylene terephthalate (PET) substrates using blade coating and photonic curing. The hybrid TCEs consist of a multiscale Ag network, combining silver metal bus lines and nanowires, overcoated by an indium zinc oxide layer, and then photonically cured. Blade coating ensures film uniformity and thickness control over large areas. Photonic curing, a non-thermal processing method with significantly lower carbon emissions, enhances the conductivity and transparency of the coated layers. Our hybrid TCEs achieve an average transmittance of (81 ± 0.4)% referenced to air ((90 ± 0.4)% referenced to the PET substrate) in the visible range, an average sheet resistance of (11 ± 0.5) Ω sq−1, and an average surface roughness of (4.3 ± 0.4) nm. We benchmark these values against commercial PET/TCE substrates. Mechanical durability tests demonstrate <3% change in resistance after 2000 bending cycles at a 1 in radius. The scalable potential of the hybrid TCE fabrication method is demonstrated by high uniformity and excellent properties in 7 in × 8 in large-area samples and by performing the photonic curing process at 11 m min−1. Furthermore, halide perovskite solar cells fabricated on these hybrid TCEs achieve average and champion power conversion efficiencies of (10.5 ± 1.0) % and 12.2%, respectively, and significantly outperform devices made on commercial PET/TCEs. This work showcases our approach as a viable pathway for high-speed “green” manufacturing of high-performance TCEs on PET substrates for flexible optoelectronic devices. 
    more » « less
  2. Indium tin oxide (ITO) coated Willow glass is an excellent substrate for roll-to-roll manufacturing of perovskite solar cells (PSCs) but can have large variability in its optical and electrical properties. Photonic curing uses intense light pulses instead of heat to process materials and has the potential to facilitate faster processing speeds in roll-to-roll manufacturing to upscale the production of PSCs. The substrate materials’ properties play an integral role in the photonic curing outcome. Here, we present the effect of ITO transmission on the photonic curing of NiO sol-gel precursors into metal oxide and consequently the PSC performance. 
    more » « less
  3. Abstract A major challenge for graphene applications is the lack of mass production technology for large‐scale and high‐quality graphene growth and transfer. Here, a roll‐to‐roll (R2R) dry transfer process for large‐scale graphene grown by chemical vapor deposition is reported. The process is fast, controllable, and environmentally benign. It avoids chemical contamination and allows the reuse of graphene growth substrates. By controlling tension and speed of the R2R dry transfer process, the electrical sheet resistance is achieved as 9.5 kΩ sq−1, the lowest ever reported among R2R dry transferred graphene samples. The R2R dry transferred samples are used to fabricate graphene‐based field‐effect transistors (GFETs) on polymer. It is demonstrated that these flexible GFETs feature a near‐zero doping level and a gate leakage current one to two orders of magnitude lower than those fabricated using wet‐chemical etched graphene samples. The scalability and uniformity of the R2R dry transferred graphene is further demonstrated by successfully transferring a 3 × 3 in2sample and measuring its field‐effect mobility with 36 millimeter‐scaled GFETs evenly spaced on the sample. The field‐effect mobility of the R2R dry transferred graphene is determined to be 205 ± 36 cm2 V−1
    more » « less
  4. null (Ed.)
    A microsecond time-scale photonic lift-off (PLO) process was used to fabricate mechanically flexible photovoltaic devices (PVs) with a total thickness of less than 20 μm. PLO is a rapid, scalable photothermal technique for processing extremely thin, mechanically flexible electronic and optoelectronic devices. PLO is also compatible with large-area devices, roll-to-roll processing, and substrates with low temperature compatibility. As a proof of concept, PVs were fabricated using CuInSe2 nanocrystal ink deposited at room temperature under ambient conditions on thin, plastic substrates heated to 100 °C. It was necessary to prevent cracking of the brittle top contact layer of indium tin oxide (ITO) during lift-off, either by using a layer of silver nanowires (AgNW) as the top contact or by infusing the ITO layer with AgNW. This approach could generally be used to improve the mechanical versatility of current collectors in a variety of ultrathin electronic and optoelectronic devices requiring a transparent conductive contact layer. 
    more » « less
  5. Abstract Roll-to-roll (R2R) printing techniques are promising for high-volume continuous production of substrate-based electronic products, as opposed to the sheet-to-sheet approach suited for low-volume work. However, one of the major challenges in R2R flexible electronics printing is achieving tight alignment tolerances, as specified by the device resolution (usually at micrometer level), for multi-layer printed electronics. The alignment of the printed patterns in different layers, known as registration, is critical to product quality. Registration errors are essentially accumulated positional or dimensional deviations caused by un-desired variations in web tensions and web speeds. Conventional registration control methods rely on model-based feedback controllers, such as PID control, to regulate the web tension and the web speed. However, those methods can not guarantee that the registration error always converges to zero due to lagging problems. In this paper, we propose a Spatial-Terminal Iterative Learning Control (STILC) method combined with PID control to enable the registration error to converge to zero iteratively, which achieves unprecedented control in the creation, integration and manipulation of multi-layer microstructures in R2R processes. We simulate the registration error generation and accumulation caused by axis mismatch between roller and motor that commonly exists in R2R systems. We show that the STILC-PID hybrid control method can eliminate the registration error completely after a reasonable number of iterations. We also compare the performances of STILC with a constant-value basis and a cosine-form basis. The results show that the control model with a cosine-form basis provides a faster convergence speed for R2R registration error elimination. 
    more » « less