skip to main content

This content will become publicly available on September 9, 2022

Title: Photonic Lift-off Process to Fabricate Ultrathin Flexible Solar Cells
A microsecond time-scale photonic lift-off (PLO) process was used to fabricate mechanically flexible photovoltaic devices (PVs) with a total thickness of less than 20 μm. PLO is a rapid, scalable photothermal technique for processing extremely thin, mechanically flexible electronic and optoelectronic devices. PLO is also compatible with large-area devices, roll-to-roll processing, and substrates with low temperature compatibility. As a proof of concept, PVs were fabricated using CuInSe2 nanocrystal ink deposited at room temperature under ambient conditions on thin, plastic substrates heated to 100 °C. It was necessary to prevent cracking of the brittle top contact layer of indium tin oxide (ITO) during lift-off, either by using a layer of silver nanowires (AgNW) as the top contact or by infusing the ITO layer with AgNW. This approach could generally be used to improve the mechanical versatility of current collectors in a variety of ultrathin electronic and optoelectronic devices requiring a transparent conductive contact layer.
Authors:
; ; ;
Award ID(s):
1822206
Publication Date:
NSF-PAR ID:
10295081
Journal Name:
ACS applied materials interfaces
ISSN:
1944-8252
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Fabricating flexible electronics on plastic is often limited by the poor dimensional stability of polymer substrates. To mitigate, glass carriers are used during fabrication, but removing the plastic substrate from a carrier without damaging the electronics remains challenging. Here we utilize a large-area, high-throughput photonic lift-off (PLO) process to rapidly separate polymer films from rigid carriers. PLO uses a 150 µs pulse of broadband light from flashlamps to lift-off functional thin films from glass carrier substrates coated with a light absorber layer (LAL). Modeling indicates that the polymer/LAL interface reaches above 800 °C during PLO, but the top surface of themore »PI remains below 120 °C. An array of indium zinc oxide (IZO) thin-film transistors (TFTs) was fabricated on a polyimide substrate and photonically lifted off from the glass carrier. The TFT mobility was unchanged by PLO. The flexible TFTs were mechanically robust, with no reduction in mobility while flexed.« less
  2. Future high performance PV devices are expected to be tandem cells consisting of a low bandgap bottom cell and a high bandgap top cell. In this study, we developed a cradle-to-end of use life cycle assessment model to evaluate the environmental impacts, primary energy demand (PED), and energy payback time (EPBT) of four integrated two-terminal tandem solar cells composed of either Si bottom and lead-based perovskite (PK Pb ) top cells (Si/PK Pb ), copper indium gallium selenide (CIGS) and PK Pb (CIGS/PK Pb ), copper zinc tin selenide (CZTS) and PK Pb (CZTS/PK Pb ), or tin-lead based perovskitemore »(PK Sn,Pb ) and PK Pb (PK Sn,Pb /PK Pb ). Environmental impacts from single junction Si solar cells were used as a reference point to interpret the results. We found that the environmental impacts for a 1 m 2 area of a cell were largely determined by the bottom cell impacts and ranged from 50% (CZTS/PK Pb ) to 120% of those of a Si cell. The ITO layer used in Si/PK Pb , CZTS/PK Pb , and PK Sn,Pb /PK Pb is the most impactful after the Si and CIGS absorbers, and contributed up to 70% (in PK Sn,Pb /PK Pb ) of the total impacts for these tandem PVs. Manufacturing a single two-terminal device was found to be a more environmentally friendly option than manufacturing two constituent single-junction cells and can reduce the environmental impacts by 30% due to the exclusion of extra glass, encapsulation, front contact and back contact layers. PED analysis indicated that PK Sn,Pb /PK Pb manufacturing has the least energy-intensive processing, and the EPBTs of Si/PK Pb , CIGS/PK Pb , CZTS/PK Pb , and PK Sn,Pb /PK Pb tandems were found to be ∼13, ∼7, ∼2, and ∼1 months, respectively. On an impacts per kW h of Si basis the environmental impacts of all the devices were much higher (up to ∼10 times). These results can be attributed to the low photoconversion efficiency (PCE) and short lifetime that were assumed. While PK Sn,Pb /PK Pb has higher impacts than Si based on current low PCE (21%) and short lifetime (5 years) assumptions, it can outperform Si if its lifetime and PCE reach 16 years and 30%, respectively. Among the configurations considered, the PK Sn,Pb /PK Pb structure has the potential to be the most environmentally friendly technology.« less
  3. Flexible electronics and mechanically bendable devices based on Group III-N semiconductor materials are emerging; however, there are several challenges in manufacturing, such as cost reduction, device stability and flexibility, and device-performance improvement. To overcome these limitations, it is necessary to replace the brittle and expensive semiconductor wafers with single-crystalline flexible templates for a new-bandgap semiconductor platform. The substrates in the new concept of semiconductor materials have a hybrid structure consisting of a single-crystalline III-N thin film on a flexible metal tape substrate which provides a convenient and scalable roll-to-roll deposition process. We present a detailed study of a unique andmore »simple direct epitaxial growth technique for crystallinity transformation to deliver single-crystalline GaN thin film with highly oriented grains along both a -axis and c -axis directions on a flexible and polycrystalline copper tape. A 2-dimensional (2D) graphene having the same atomic configuration as the (0001) basal plane of wurtzite structure is employed as a seed layer which plays a key role in following the III-N epitaxy growth. The DC reactive magnetron sputtering method is then applied to deposit an AlN layer under optimized conditions to achieve preferred-orientation growth. Finally, single-crystalline GaN layers (∼1 μm) are epitaxially grown using metal organic chemical vapor deposition (MOCVD) on the biaxially-textured buffer layer. The flexible single-crystalline GaN film obtained using this method provides a new way for a wide-bandgap semiconductor platform pursuing flexible, high-performance, and versatile device technology.« less
  4. The discovery of oxide electronics is of increasing importance today as one of the most promising new technologies and manufacturing processes for a variety of electronic and optoelectronic applications such as next-generation displays, batteries, solar cells, and photodetectors. The high potential use seen in oxide electronics is due primarily to their high carrier mobilities and their ability to be fabricated at low temperatures. However, since the majority of oxide semiconductors are n-type oxides, current applications are limited to unipolar devices, eventually developing oxide-based bipolar devices such as p-n diodes and complementary metal-oxide semiconductors. We have contributed to wide range ofmore »oxide semiconductors and their electronics and optoelectronic device applications. Particularly, we have demonstrated n-type oxide-based thin film transistors (TFT), integrating In2O3-based n-type oxide semiconductors from binary cation materials to ternary cation species including InZnO, InGaZnO (IGZO), and InAlZnO. We have suggested channel/metallization contact strategies to achieve stable TFT performance, identified vacancy-based native defect doping mechanisms, suggested interfacial buffer layers to promote charge injection capability, and established the role of third cation species on the carrier generation and carrier transport. More recently, we have reported facile manufacturing of p-type SnOx through reactive magnetron sputtering from a Sn metal target. The fabricated p-SnOx was found to be devoid of metallic phase of Sn from x-ray photoelectron spectroscopy and demonstrated stable performance in a fully oxide based p-n heterojunction together with n-InGaZnO. The oxide-based p-n junctions exhibited a high rectification ratio greater than 103 at ±3 V, a low saturation current of ~2x10-10, and a small turn-on voltage of -0.5 V. With all the previous achievements and investigations about p-type oxide semiconductors, challenges remain for implementing p-type oxide realization. For the implementation of oxide-based p-n heterojunctions, the performance needs to be further enhanced. The current on/off ration may be limited, in our device structure, due to either high reverse saturation current (or current density) or non-ideal performance. In this study, two rational strategies are suggested to introduce an “intrinsic” layer, which is expected to reduce the reverse saturation current between p-SnOx and n-IGZO and hence increase the on/off ratio. The carrier density of n-IGZO is engineered in-situ during the sputtering process, by which compositionally homogeneous IGZO with significantly reduced carrier density is formed at the interface. Then, higher carrier density IGZO is formed continuously on the lower carrier density IGZO during the sputtering process without any exposure of the sample to the air. Alternatively, heterogeneous oxides of MgO and SiO2 are integrated into between p-SnOx and n-IGZO, by which the defects on the surface can be passivated. The interfacial properties are thoroughly investigated using transmission electron microscopy and atomic force microscopy. The I-V characteristics are compared between the set of devices integrated with two types of “intrinsic” layers. The current research results are expected to contribute to the development of p-type oxides and their industrial application manufacturing process that meets current processing requirements, such as mass production in p-type oxide semiconductors.« less
  5. The use of laser induced forward transfer (LIFT) techniques for printing materials for sensor and electronics applications is growing as additive manufacturing expands into the fabrication of functional structures. LIFT is capable of achieving high speed/throughput, high-resolution patterns of a wide range of materials over many types of substrates for applications in flexible-hybrid electronics. In many LIFT applications, the use of a sacrificial or laser-absorbing donor layer is required despite the fact that it can only be used once. This is because the various types of release layers commonly in use with LIFT are completely vaporized when illuminated with amore »laser pulse. A better solution would be to employ a reusable laser absorbing layer to which the transferable ink or material is attached and then released by a laser pulse without damage to the absorbing layer, therefore allowing its repeated use in subsequent transfers. In this work, we describe the use of two types of reusable laser-absorbing layers for LIFT. One is based on an elastomeric donor layer made from poly(dimethylsiloxane) or PDMS, while the other is based on a ceramic thin film comprised of indium tin oxide (ITO). These release layers have been used at NRL to transfer a wide range of materials including fluids, nanoinks, nanowires and metal foils of varying size and thickness. We will present examples of both PDMS and ITO as donor layers for LIFT and their reusability for laser printing of distinct materials ranging from fluids to solids.« less