skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Near‐IR Emissive B–N Lewis Pair‐Functionalized Anthracenes via Selective LUMO Extension in Conjugated Dimer and Polymer
Abstract Acenes are attractive as building blocks for low gap organic materials with applications, for example, in organic light emitting diodes, solar cells, bioimaging and diagnostics. Previously, we have shown that modification of dipyridylanthracene via B–N Lewis pair fusion (BDPA) strongly redshifts the emission, while facilitating self‐sensitized reactivity toward O2to reversibly generate the corresponding endoperoxides. Herein, we report on the further expansion of the π‐system of BDPA to a vinyl‐substituted monomer, vinylene‐bridged dimer, and a polymer with an average of 20 chromophores. The extension of π‐conjugation results in largely reduced band gaps of 1.8 eV for the dimer and 1.7 eV for the polymer, the latter giving rise to NIR emission with a maximum at 731 nm and an appreciable quantum yield of 7 %. Electrochemical and computational studies reveal efficient delocalization of the lowest unoccupied molecular orbital (LUMO) along the pyridyl‐anthracene‐pyridyl axis, which results in effective electronic communication between BDPA units, selectively lowers the LUMO, and ultimately narrows the band gap. Time‐resolved emission and transient absorption (TA) measurements offer insights into the pertinent photophysical processes. Extension of π‐conjugation also slows down the self‐sensitized formation of endoperoxides, while significantly accelerating the thermal release of singlet oxygen to regenerate the parent acenes.  more » « less
Award ID(s):
2247211 1954122 2215975 2018753 1229030
PAR ID:
10580528
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
63
Issue:
45
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report a p-π* conjugated organic molecule based on triarylborane as n-type organic semiconductor with unique alcohol solubility. Its favorable alcohol solubility even in the absence of polar side chains is mainly due to the large dipole moment and enhanced flexibility of the conjugated backbone once the boron atom is embedded. The p-π* conjugation directly affects the electronic structure as the LUMO is fully delocalized, including the boron atom, whereas the HOMO has the boron atom residing on a node. As a result, the molecule exhibits low-lying LUMO/HOMO energy levels of −3.61 eV/−5.73 eV paired with a good electron mobility of 1.37 × 10 −5 cm 2 V −1 s −1 . We further demonstrate its application as an electron acceptor in alcohol-processed organic solar cells (OSCs). To our best knowledge, this p-π* conjugated molecule is the first alcohol-processable non-fullerene electron acceptor, a feature that is in strong demand for environmentally friendly processing of OSCs. 
    more » « less
  2. Abstract The functionalization of polycyclic aromatic hydrocarbons (PAHs) via B←N Lewis pair formation offers an opportunity to judiciously fine‐tune the structural features and optoelectronic properties, to suit the demands of applications in organic electronic devices, bioimaging, and as sensitizers for singlet oxygen generation. We demonstrate that the N‐directed electrophilic borylation of 2,6‐di(pyrid‐2‐yl)anthracene offers access to linearly extended acene derivativesPy‐BR(R=Et, Ph, C6F5). In comparison to indeno‐fused 9,10‐diphenylanthracene, the formal “BN for CC” replacement inPy‐BRselectively lowers the LUMO, resulting in a much reduced HOMO–LUMO gap. An even more extended conjugated system with seven six‐membered rings in a row (Qu‐BEt) is obtained by borylation of 2,6‐di(quinolin‐8‐yl)anthracene. FluorinatedPy‐BPfshows particularly advantageous properties, including relatively lower‐lying HOMO and LUMO levels, strong yellow‐green fluorescence, and effective singlet oxygen sensitization, while resisting self‐sensitized conversion to its endoperoxide. 
    more » « less
  3. Abstract The development of efficient organic sonosensitizers is crucial for sonodynamic therapy (SDT) in the field of cancer treatment. Herein, a new strategy for the development of efficient organic sonosensitizers based on triarylboron‐doped acenethiophene scaffolds is presented. The attachment of boron to the linear acenethiophenes lowers the lowest unoccupied molecular orbital (LUMO) energy, resulting in redshifted absorptions and emissions. After encapsulation with the amphiphilic polymer DSPE‐mPEG2000, it is found that the nanostructured BAnTh‐NPs and BTeTh‐NPs (nanoparticles of BAnTh and BTeTh) shows efficient hydroxyl radical (OH) generation under ultrasound (US) irradiation in aqueous solution with almost no phototoxicity, which can overcome the shortcomings of O2‐dependent SDT and avoid the potential cutaneous phototoxicity issue. In vitro and in vivo therapeutic results validate that boron‐doped acenethiophenes as sonosensitizers enable high SDT efficiency with low phototoxicity and good biocompatibility, indicating that boron‐functionalization of acenes is a promising strategy toward organic sonosensitizers for SDT. 
    more » « less
  4. Abstract Above‐band gap optical excitation of non‐centrosymmetric semiconductors can lead to the spatial shift of the center of electron charge in a process known as shift current. Shift current is investigated in single‐crystal SnS2, a layered semiconductor with the band gap of ≈2.3 eV, by THz emission spectroscopy and first principles density functional theory (DFT). It is observed that normal incidence excitation with above gap (400 nm; 3.1 eV) pulses results in THz emission from 2H SnS2() polytype, where such emission is nominally forbidden by symmetry. It is argued that the underlying symmetry breaking arises due to the presence of stacking faults that are known to be ubiquitous in SnS2single crystals and construct a possible structural model of a stacking fault with symmetry properties consistent with the experimental observations. In addition to shift current, it is observed THz emission by optical rectification excited by below band gap (800 nm; 1.55 eV) pulses but it requires excitation fluence more than two orders of magnitude higher to produce same signal amplitude. These results suggest that ultrafast shift current in which can be excited with visible light in blue–green portion of the spectrum makes SnS2a promising source material for THz photonics. 
    more » « less
  5. Conjugated polymers composed of tricoordinate boron and π-conjugated units possess extended conjugation with relatively low-lying LUMOs arising from p B –π interactions. However, donor–acceptor (D–A) polymers that feature triorganoboranes alternating with highly electron-rich donors remain scarce. We present here a new class of hybrid D–A polymers that combine electron-rich dithienosiloles or dithienogermoles with highly robust tricoordinate borane acceptors. Polymers of modest to high molecular weight are readily prepared by Pd-catalyzed Stille coupling reaction of bis(halothienyl)boranes and distannyldithienosiloles or -germoles. The polymers are obtained as dark red solids that are stable in air and soluble in common organic solvents. Long wavelength UV-vis absorptions at ca. 500–550 nm indicate effective π-conjugation and pronounced D–A interactions along the backbone. The emission maxima occur at wavelengths longer than 600 nm in solution and experience further shifts to lower energy with increasing solvent polarity, indicative of strong intramolecular charge transfer (ICT) character of the excited state. The powerful acceptor character of the borane comonomer units in the polymer structures is also evident from cyclic voltammetry (CV) analyses that reveal relatively low-lying LUMO levels of the polymers, enhancing the D–A interaction. Density functional theory (DFT) calculations on model oligomers further support these experimental observations. 
    more » « less