A dissimilar weld between a low alloy steel (LAS) butter weld joined to a F65 steel pipe using a narrow groove hot wire gas tungsten arc welding (HW-GTAW) procedure with Alloy 625 filler metal was investigated. The weld interpass microstructure is comprised of large swirls formed by a macrosegregation mechanism involving partial, non-uniform mixing of liquid base metal with the lower melting temperature weld pool, followed by fast solidification. This mechanism produces steep gradients in composition and solidification behavior. The resulting swirls are composed of alternating iron-rich peninsulas and partially mixed zones (PMXZ) that are surrounded by planar and cellular zones exhibiting multiple solidification directions. Large austenitic grains, encompassing planar, cellular, and dendritic morphologies, nucleate off peninsulas in direct contact with the weld pool. The highest hardness was found in nickel and chromium rich PMXZs that exhibited a lath martensite microstructure. In the event of exposure to hydrogen containing environments, the PMXZs could serve as nucleation sites for hydrogen assisted cracking. 
                        more » 
                        « less   
                    
                            
                            Solidification Behavior and Microstructure Evolution in Dissimilar Electron Beam Welds Between Commercially Pure Iron and Nickel
                        
                    
    
            Electron beam welding processes have highly accurate control of both spatial and temporal heating profiles which provide unique capabilities in dissimilar metals joining. In this work, electron beam welds were made between commercially pure nickel and iron to determine the effect of fusion zone composition on solidification behavior and microstructure evolution. The weld was made with a beam deflected in a circular pattern to enable joining and promote mixing. The beam traveled at a shallow angle of approximately 1 deg to the joint interface starting in the nickel and finishing in the iron. The shallow angle created a weld with a composition gradient along its 110 mm length. The solidification behavior and final weld microstructure were characterized using both light optical microscopy and scanning electron microscopy. Electron backscatter diffraction was used to determine the phase fractions in the fusion zone. A change in solidification mode from face-centered cubic austenite to body-centered cubic ferrite was observed as a function of fusion zone composition. Weld cross-sections containing 65.5 wt pct Fe and 76.9 wt pct Fe had a two-phase fcc + bcc microstructure. Using the compositions and phase fractions, the two-phase region was estimated to be between 56.4 and 79.7 wt pct Fe. Martensite was observed in cross-sections containing between 76.9 wt pct Fe and 98.1 wt pct Fe, which was confirmed using hardness measurements. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2052747
- PAR ID:
- 10580563
- Publisher / Repository:
- Springer Nature Link
- Date Published:
- Journal Name:
- Metallurgical and Materials Transactions A
- Volume:
- 55
- Issue:
- 6
- ISSN:
- 1073-5623
- Page Range / eLocation ID:
- 2004 to 2018
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Additions of nitrogen were made to ERNiCr-3 (FM 82) weld metal to investigate the effect on weld metal microstructure and solidification cracking susceptibility. Weld samples were prepared with different argon-nitrogen shielding gas mixtures to produce nitrogen variations in the weld metal. The cast pin tear test (CPTT) was then used to evaluate solidification cracking susceptibility as a function of weld metal nitrogen content. Phase fraction and composition of constituents in the final solidification microstructure were characterized via optical and electron microscopy. Thermodynamic (Scheil) calculations were performed to determine the phase formation during solidification, associated solidification path, and solidification temperature range. Solidification cracking susceptibility was found to increase significantly with increasing nitrogen content. The overall amount of second phase in the solidified microstructure increased when nitrogen was added to the weld metal. Small skeletal constituents in the interdendritic regions, primarily Nb-rich carbides (NbC), were more frequently observed with increasing weld metal nitrogen content. Larger cuboidal Ti-rich nitrides (TiN) and carbonitrides (Ti, Nb)(N, C) were found only when nitrogen was added to the weld metal. Their location in dendrite core regions indicates formation during an earlier stage of the solidification process. Scheil calculations confirmed the strong effect of nitrogen additions on the amount and sequence of phase formation during solidification of ERNiCr-3 weld metal. High nitrogen levels ( 100 ppm) facilitate primary nitride formation prior to the solidification of the gamma () dendrites, and increase the amount of phase constituents in the solidification microstructure. The presence of nitrogen also shifts the start of the eutectic /NbC formation at the end of solidification to lower temperatures, which results in an increase in the solidification temperature range. This occurs at much lower nitrogen levels ( 25 ppm) and correlates with the observed increase in solidification cracking susceptibility.more » « less
- 
            The use of laser powder bed fusion (LPBF) for faster and more customized manufacturing has grown significantly. However, LPBF parts often require welding to other components, raising concerns about their weldability due to differences in microstructure compared to conventionally manufactured parts. Despite its importance, research on the weldability of additive manufacturing materials remains limited. This study aims to evaluate the susceptibility of LPBF 316L stainless steel to weld solidification cracking using transverse varestraint testing and compare results with conventional 316L. Tests were conducted across strain levels from 0.5 to 7%, revealing a saturated strain of 4%, with maximum crack length (MCL), maximum crack distance (MCD), and total number of cracks (TNC) of approximately 0.36 mm and 31, respectively. Compared to existing literature, LPBF 316L produced with optimized printing parameters and low nickel equivalent content exhibited higher resistance to weld solidification cracking, reflected in lower MCL and MCD values. Cracks initiated at the solidus interface and propagated along the ferrite–austenite boundary under strain. Microstructural changes were observed after testing, transitioning from cellular austenitic solidification in LPBF to a skeletal ferrite-austenitic mode due to material remelting and slower cooling rates. These findings highlight that reduced nickel equivalent, alongside optimized printing parameters, contribute to enhanced weld solidification cracking resistance in LPBF 316L. This study advances understanding of the weldability of LPBF materials.more » « less
- 
            Abstract Controlling microstructure in fusion-based metal additive manufacturing (AM) remains a significant challenge due to the many parameters that directly impact solidification condition. Multiprincipal element alloys (MPEAs), also known as high entropy alloys, offer a vast compositional space to design for microstructural engineering due to their chemical complexity and exceptional properties. Here, we use the FeMnCoCr system as a model platform for exploring alloy design in MPEAs for AM. By exploiting the decreasing stability of the face-centered cubic phase with increasing Mn content, we achieve notable grain refinement and breakdown of epitaxial columnar grain growth. We employ a multifaceted approach encompassing thermodynamic modeling, operando synchrotron X-ray diffraction, multiscale microstructural characterization, and mechanical testing to gain insight into the solidification physics and its ramifications on the resulting microstructure of FeMnCoCr MPEAs. This work aims toward tailoring desirable grain sizes and morphology through targeted manipulation of phase stability, thereby advancing microstructure control in AM applications.more » « less
- 
            Nickel-based alloys, Alloys 625 and 718, are widely used in the aerospace industry due to their excellent corrosion resistance and high strength at elevated temperatures. Recently, these alloys have been utilized to manufacture rocket engine components using additive manufacturing (AM) technologies such as laser powder bed fusion (LPBF) and powder-blown laser-based directed energy deposition (DED). These technologies offer faster and more cost-effective production while enabling the fabrication of near-net-shape parts that are subsequently joined by welding. However, solidification cracking susceptibility varies significantly between AM and conventionally processed materials, and limited weldability characterization has been conducted on AM-fabricated materials. This study assesses the weld solidification cracking susceptibility of Alloys 625 and 718 produced by wrought (mill-rolled), LPBF, and DED using transverse varestraint testing, Scheil-Gulliver simulations, the Crack Susceptibility Index (CSI), and the Flow Resistance Index (FRI). Transverse varestraint testing revealed that AM parts exhibited higher susceptibility due to the presence of larger and elongated grains in the fusion zone, affecting the weld solidification cracking response. In Alloy 625, the LPBF condition exhibited the highest maximum crack distance (MCD) of 2.35 ± 0.16 mm, compared to 1.56 ± 0.06 mm for wrought and 1.72 ± 0.10 mm for DED. Similarly, in Alloy 718, the DED condition showed the highest MCD of 2.93 ± 0.41 mm, while the wrought condition had an MCD of 2.01 ± 0.12 mm, and the LPBF condition reached 3.01 ± 0.33 mm at 5 % strain, without a clearly defined saturation strain. Although wrought materials demonstrated greater resistance to solidification cracking, solidification simulations did not correlate with the experimental testing, as they do not account for microstructural and mechanical factors, relying solely on chemistry.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    