skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trapping light in air with membrane metasurfaces for vibrational strong coupling
Optical metasurfaces can manipulate electromagnetic waves in unprecedented ways at ultra-thin engineered interfaces. Specifically, in the midinfrared (mid-IR) region, metasurfaces have enabled numerous biochemical sensing, spectroscopy, and vibrational strong coupling (VSC) applications via enhanced light-matter interactions in resonant cavities. However, mid-IR metasurfaces are usually fabricated on solid supporting substrates, which degrade resonance quality factors (Q) and hinder efficient sample access to the near-field electromagnetic hotspots. Besides, typical IR-transparent substrate materials with low refractive indices, such as CaF2, NaCl, KBr, and ZnSe, are usually either water-soluble, expensive, or not compatible with low-cost mass manufacturing processes. Here, we present novel free-standing Si-membrane mid-IR metasurfaces with strong light-trapping capabilities in accessible air voids. We employ the Brillouin zone folding technique to excite tunable, highQ quasi-bound states in the continuum (qBIC) resonances with our highest measured Q-factor of 722. Leveraging the strong field localizations in accessible air cavities, we demonstrate VSC with multiple quantities of PMMA molecules and the qBIC modes at various detuning frequencies. Our new approach of fabricating mid-IR metasurfaces into semiconductor membranes enables scalable manufacturing of mid-IR photonic devices and provides exciting opportunities for quantum-coherent light-matter interactions, biochemical sensing, and polaritonic chemistry.  more » « less
Award ID(s):
2401616
PAR ID:
10580644
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Moscatelli, Alberto
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optical metasurfaces provide solutions to label-free biochemical sensing by localizing light resonantly beyond the diffraction limit, thereby selectively enhancing light–matter interactions for improved analytical performance. However, high-Qresonances in metasurfaces are usually achieved in the reflection mode, which impedes metasurface integration into compact imaging systems. Here, we demonstrate a metasurface platform for advanced biochemical sensing based on the physics of the bound states in the continuum (BIC) and electromagnetically induced transparency (EIT) modes, which arise when two interfering resonances from a periodic pattern of tilted elliptic holes overlap both spectrally and spatially, creating a narrow transparency window in the mid-infrared spectrum. We experimentally measure these resonant peaks observed in transmission mode (Q∼734 atλ∼8.8µm) in free-standing silicon membranes and confirm their tunability through geometric scaling. We also demonstrate the strong coupling of the BIC-EIT modes with a thinly coated PMMA film on the metasurface, characterized by a large Rabi splitting (32cm−1) and biosensing of protein monolayers in transmission mode. Our new photonic platform can facilitate the integration of metasurface biochemical sensors into compact and monolithic optical systems while being compatible with scalable manufacturing, thereby clearing the way for on-site biochemical sensing in everyday applications. 
    more » « less
  2. Abstract Nanostructured plasmonic surfaces allow for precise tailoring of electromagnetic modes within sub-diffraction mode volumes, boosting light–matter interactions. This study explores vibrational strong coupling (VSC) between molecular ensembles and subradiant “dark” cavities that support infrared quadrupolar plasmonic resonances (QPLs). The QPL mode exhibits a dispersion characteristic of bound states in the continuum (BIC). That is, the mode is subradiant or evanescent at normal incidence and acquires increasing “bright” dipole character with larger in-plane wavevectors. We deposited polymethyl methacrylate (PMMA) thin films on QPL substrates to induce VSC with the carbonyl stretch in PMMA and measured the resulting infrared (IR) spectra. Our computational analysis predicts the presence of “dark” subradiant polariton states within the near-field of the QPL mode, and “bright” collective molecular states. This finding is consistent with classical and quantum mechanical descriptions of VSC that predict hybrid polariton states with cavity-like modal character andN−1collective molecular states with minimal cavity character. However, the behaviour is opposite of what is standardly observed in VSC experiments that use “bright” cavities, which results in “bright” polariton states that can be spectrally resolved as well asN−1collective molecular states that are spectrally absent. Our experiments confirm a reduction of molecular absorption and other spectral signatures of VSC with the QPL mode. In comparison, our experiments promoting VSC with dipolar plasmonic resonances (DPLs) reproduce the conventional behavior. Our results highlight the significance of cavity mode symmetry in modifying the properties of the resultant states from VSC, while offering prospects for direct experimental probing of theN−1molecule-like states that are usually spectrally “dark”. 
    more » « less
  3. Infrared (IR) spectroscopic fingerprinting is a powerful analytical tool for characterizing molecular compositions across biological, environmental, and industrial samples through their vibrational modes. Specifically, when the sample is characterized in resonant plasmonic cavities, as in the surface-enhanced mid-IR absorption spectroscopy (SEIRAS), highly sensitive and specific molecular detection can be achieved. However, current SEIRAS techniques rely on nanofabricated sub-wavelength antennas, limited by low-throughput lithographic processes, lacking scalability to address broad biochemical sensing applications. To address this, we present an on-resonance SEIRAS method utilizing silver (Ag) cubic microparticles (Ag-CMPs) with robust mid-IR plasmonic resonances. These monocrystalline Ag-CMPs, featuring sharp edges and vertices, are synthesized via a high-throughput, wet-chemical process. When dispersed on gold mirror substrates with an aluminum oxide spacer, Ag-CMPs support enhanced near-field light-matter interactions in nanocavities while enabling far-field imaging-based optical interrogation due to their strong extinction cross-sections. We demonstrate the detection of polydimethylsiloxane (PDMS) and bovine serum albumin (BSA) monolayers by simply probing individual Ag-CMPs, enabled by the resonant amplification of the characteristic vibrational absorptions. Furthermore, our single-particle SEIRAS (SP-SEIRAS) approach effectively analyzes complex human peritoneal fluid (PF) samples, eliminating the challenges of standard bulk sample measurements. This scalable and efficient SP-SEIRAS method addresses key limitations of IR spectroscopic fingerprinting techniques, unlocking possibilities for their widespread adoption in real-world biochemical sensing applications. 
    more » « less
  4. Topological photonics allows for the deterministic creation of electromagnetic modes of any dimensionality lesser than that of the system. In the context of two-dimensional systems such as metasurfaces, topological photonics enables trapping of light in 0D cavities defined by boundaries of higher-order topological insulators and topological defects, as well as guiding of optical fields along 1D boundaries between topologically distinct domains. More importantly, it allows engineering interactions of topological modes with radiative continuum, which opens new opportunities to control light-matter interactions, scattering, generation, and emission of light. This review article aims at highlighting recent work in the field focusing on the control of radiation and generation of light in topological metasurfaces. 
    more » « less
  5. Abstract Heterogeneously integrated hybrid photonic crystal cavities enable strong light–matter interactions with solid state, optically addressable quantum memories. A key challenge to realizing high quality factor (Q) hybrid photonic crystals is the reduced index contrast on the substrate compared to suspended devices in air. This challenge is particularly acute for color centers in diamond because of diamond’s high refractive index, which leads to increased scattering loss into the substrate. Here, we develop a design methodology for hybrid photonic crystals utilizing a detailed understanding of substrate-mediated loss, which incorporates sensitivity to fabrication errors as a critical parameter. Using this methodology, we design robust, high-Q, GaAs-on-diamond photonic crystal cavities, and by optimizing our fabrication procedure, we experimentally realize cavities withQapproaching 30,000 at a resonance wavelength of 955 nm. 
    more » « less