Abstract Unconscious neural activity has been shown to precede both motor and cognitive acts. In the present study, we investigated the neural antecedents of overt attention during visual search, where subjects make voluntary saccadic eye movements to search a cluttered stimulus array for a target item. Building on studies of both overt self-generated motor actions (Lau et al., 2004, Soon et al., 2008) and self-generated cognitive actions (Bengson et al., 2014, Soon et al., 2013), we hypothesized that brain activity prior to the onset of a search array would predict the direction of the first saccade during unguided visual search. Because both spatial attention and gaze are coordinated during visual search, both cognition and motor actions are coupled during visual search. A well-established finding in fMRI studies of willed action is that neural antecedents of the intention to make a motor act (e.g., reaching) can be identified seconds before the action occurs. Studies of the volitional control ofcovertspatial attention in EEG have shown that predictive brain activity is limited to only a few hundred milliseconds before a voluntary shift of covert spatial attention. In the present study, the visual search task and stimuli were designed so that subjects could not predict the onset of the search array. Perceptual task difficulty was high, such that they could not locate the target using covert attention alone, thus requiring overt shifts of attention (saccades) to carry out the visual search. If the first saccade to the array onset in unguided visual search shares mechanisms with willed shifts of covert attention, we expected predictive EEG alpha-band activity (8-12 Hz) immediately prior to the array onset (within 1 sec) (Bengson et al., 2014; Nadra et al., 2023). Alternatively, if they follow the principles of willed motor actions, predictive neural signals should be reflected in broadband EEG activity (Libet et al., 1983) and would likely emerge earlier (Soon et al., 2008). Applying support vector machine decoding, we found that the direction of the first saccade in an unguided visual search could be predicted up to two seconds preceding the search array’s onset in the broadband but not alpha-band EEG. These findings suggest that self-directed eye movements in visual search emerge from early preparatory neural activity more akin to willed motor actions than to covert willed attention. This highlights a distinct role for unconscious neural dynamics in shaping visual search behavior.
more »
« less
This content will become publicly available on January 15, 2026
Self-Awareness from Whole-Body Movements
Humans can recognize their whole-body movements even when displayed as dynamic dot patterns. The sparse depiction of whole-body movements, coupled with a lack of visual experience watching ourselves in the world, has long implicated nonvisual mechanisms to self-action recognition. Using general linear modeling and multivariate analyses on human brain imaging data from male and female participants, we aimed to identify the neural systems for this ability. First, we found that cortical areas linked to motor processes, including frontoparietal and primary somatomotor cortices, exhibit greater engagement and functional connectivity when recognizing self-generated versus other-generated actions. Next, we show that these regions encode self-identity based on motor familiarity, even after regressing out idiosyncratic visual cues using multiple regression representational similarity analysis. Last, we found the reverse pattern for unfamiliar individuals: encoding localized to occipitotemporal visual regions. These findings suggest that self-awareness from actions emerges from the interplay of motor and visual processes.
more »
« less
- Award ID(s):
- 2142269
- PAR ID:
- 10580700
- Publisher / Repository:
- Society of Neuroscience
- Date Published:
- Journal Name:
- The Journal of Neuroscience
- Volume:
- 45
- Issue:
- 3
- ISSN:
- 0270-6474
- Page Range / eLocation ID:
- e0478242024
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Internal signals from the body and external signals from the environment are processed by brain-wide circuits to guide behavior. However, the complete brain-wide circuit activity underlying interoception—the perception of bodily signals—and its interactions with sensorimotor circuits remain unclear due to technical barriers to accessing whole-brain activity at the cellular level during organ physiology perturbations. We developed an all-optical system for whole-brain neuronal imaging in behaving larval zebrafish during optical uncaging of gut-targeted nutrients and visuo-motor stimulation. Widespread neural activity throughout the brain encoded nutrient delivery, unfolding on multiple timescales across many specific peripheral and central regions. Evoked activity depended on delivery location and occurred with amino acids and D-glucose, but not L-glucose. Many gut-sensitive neurons also responded to swimming and visual stimuli, with brainstem areas primarily integrating gut and motor signals and midbrain regions integrating gut and visual signals. This platform links body-brain communication studies to brain-wide neural computation in awake, behaving vertebrates.more » « less
-
Kay, Kendrick (Ed.)A central goal of neuroscience is to understand how function-relevant brain activations are generated. Here we test the hypothesis that function-relevant brain activations are generated primarily by distributed network flows. We focused on visual processing in human cortex, given the long-standing literature supporting the functional relevance of brain activations in visual cortex regions exhibiting visual category selectivity. We began by using fMRI data from N = 352 human participants to identify category-specific responses in visual cortex for images of faces, places, body parts, and tools. We then systematically tested the hypothesis that distributed network flows can generate these localized visual category selective responses. This was accomplished using a recently developed approach for simulating – in a highly empirically constrained manner – the generation of task-evoked brain activations by modeling activity flowing over intrinsic brain connections. We next tested refinements to our hypothesis, focusing on how stimulus-driven network interactions initialized in V1 generate downstream visual category selectivity. We found evidence that network flows directly from V1 were sufficient for generating visual category selectivity, but that additional, globally distributed (whole-cortex) network flows increased category selectivity further. Using null network architectures we also found that each region’s unique intrinsic “connectivity fingerprint” was key to the generation of category selectivity. These results generalized across regions associated with all four visual categories tested (bodies, faces, places, and tools), and provide evidence that the human brain’s intrinsic network organization plays a prominent role in the generation of functionally relevant, localized responses.more » « less
-
ABSTRACT Pectoral fins play a crucial role in fish locomotion. Despite fishes living in complex fluid environments that exist in rivers and tidal flows, the role of the pectoral fins in navigating turbulent flows is not well understood. This study investigated the kinematics and muscle activity of pectoral fins in rainbow trout as they held station in the unsteady flows behind a D-section cylinder. We observed two distinct pectoral fin behaviors, one during braking and the other during Kármán gaiting. These behaviors were correlated to whole-body movements in response to the hydrodynamic conditions of specific regions in the cylinder wake. Sustained fin extensions during braking, where the fin was held out to maintain its position away from the body and against the flow, were associated with the cessation of forward body velocity, where the fish avoided the suction region directly downstream of the cylinder. Transient fin extensions and retractions during Kármán gaiting controlled body movements in the cross-stream direction. These two fin behaviors had different patterns of muscle activity. All braking events required recruitment from both the abductor and adductor musculature to actively extend a pectoral fin. In contrast, over 50% of fin extension movements during Kármán gaiting proceed in the absence of muscle activity. We reveal that in unsteady fluid environments, pectoral fin movements are the result of a complex combination of passive and active mechanisms that deviate substantially from canonical labriform locomotion, the implications of which await further work on the integration of sensory and motor systems.more » « less
-
Complex tasks like hunting moving prey in an unpredictable environment require high levels of motor and sensory integration. An animal needs to detect and track suitable prey objects, measure their distance and orientation relative to its own position, and finally produce the correct motor output to approach and capture the prey. In the insect brain, the central complex (CX) is one target area where integration is likely to take place. In this study, we performed extracellular multi-unit recordings on the CX of freely hunting praying mantises (Tenodera sinensis). Initially, we recorded the neural activity of freely moving mantises as they hunted live prey. The recordings showed activity in cells that either reflected the mantis's own movements or the actions of a prey individual, which the mantises focused on. In the latter case, the activity increased as the prey moved and decreased when it stopped. Interestingly, cells ignored the movement of the other prey than the one to which the mantis attended. To obtain quantitative data, we generated simulated prey targets presented on an LCD screen positioned below the clear floor of the arena. The simulated target oscillated back and forth at various angles and distances. We identified populations of cells whose activity patterns were strongly linked to the appearance, movement, and relative position of the virtual prey. We refer to these as sensory responses. We also found cells whose activity preceded orientation movement toward the prey. We call these motor responses. Some cells showed both sensory and motor properties. Stimulation through tetrodes in some of the preparations could also generate similar movements. These results suggest the crucial importance of the CX to prey-capture behavior in predatory insects like the praying mantis and, hence, further emphasize its role in behaviorally and ecologically relevant contexts.more » « less
An official website of the United States government
