skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MTUQ: a framework for estimating moment tensors, point forces, and their uncertainties
SUMMARY We introduce MTUQ, an open-source Python package for seismic source estimation and uncertainty quantification, emphasizing flexibility and operational scalability. MTUQ provides MPI-parallelized grid search and global optimization capabilities, compatibility with 1-D and 3-D Green’s function database formats, customizable data processing, C-accelerated waveform and first-motion polarity misfit functions, and utilities for plotting seismic waveforms and visualizing misfit and likelihood surfaces. Applicability to a range of full- and constrained-moment tensor, point force, and centroid inversion problems is possible via a documented application programming interface, accompanied by example scripts and integration tests. We demonstrate the software using three different types of seismic events: (1) a 2009 intraslab earthquake near Anchorage, Alaska; (2) an episode of the 2021 Barry Arm landslide in Alaska; and (3) the 2017 Democratic People’s Republic of Korea underground nuclear test. With these events, we illustrate the well-known complementary character of body waves, surface waves, and polarities for constraining source parameters. We also convey the distinct misfit patterns that arise from each individual data type, the importance of uncertainty quantification for detecting multimodal or otherwise poorly constrained solutions, and the software’s flexible, modular design.  more » « less
Award ID(s):
2104052
PAR ID:
10580721
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Geophysical Journal International
Volume:
241
Issue:
2
ISSN:
0956-540X
Format(s):
Medium: X Size: p. 1373-1390
Size(s):
p. 1373-1390
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY Elastodynamic Green’s functions are an essential ingredient in seismology as they form the connection between direct observations of seismic waves and the earthquake source. They are also fundamental to various seismological techniques including physics-based ground motion prediction and kinematic or dynamic source inversions. In regions with established 3-D models of the Earth’s elastic structure, such as southern California, 3-D Green’s functions can be computed using numerical simulations of seismic wave propagation. However, such simulations are computationally expensive, which poses challenges for real-time ground motion prediction and uncertainty quantification in source inversions. In this study, we address these challenges by using a reduced-order model (ROM) approach that enables the rapid evaluation of approximate Green’s functions. The ROM technique developed approximates three-component time-dependent surface velocity wavefields obtained from numerical simulations of seismic wave propagation. We apply our ROM approach to a 50 km $$\times$$ 40 km area in greater Los Angeles accounting for topography, site effects, 3-D subsurface velocity structure, and viscoelastic attenuation. The ROM constructed for this region enables rapid computation ($$\approx 0.0001$$ CPU hr) of complete, high-resolution (500 m spacing), 0.5 Hz surface velocity wavefields that are accurate for a shortest wavelength of 1.0 km for a single elementary moment tensor source. Using leave-one-out cross validation, we measure the accuracy of our Green’s functions for the CVM-S velocity model in both the time domain and frequency domain. Averaged across all sources, receivers, and time steps, the error in the rapid seismograms is less than 0.01 cm s−1. We demonstrate that the ROM can accurately and rapidly reproduce simulated seismograms for generalized moment tensor sources in our region, as well as kinematic sources by using a finite fault model of the 1987 $$M_\mathrm{ W}$$ 5.9 Whittier Narrows earthquake as an example. We envision that rapid, accurate Green’s functions from reduced-order modelling for complex 3-D seismic wave propagation simulations will be useful for constructing real-time ground motion synthetics and source inversions with high spatial resolution. 
    more » « less
  2. SUMMARY The seismic quality factor (Q) of the Earth’s mantle is of great importance for the understanding of the physical and chemical properties that control mantle anelasticity. The radial structure of the Earth’s Q is less well resolved compared to its wave speed structure, and large discrepancies exist among global 1-D Q models. In this study, we build a global data set of amplitude measurements of S, SS, SSS and SSSS waves using earthquakes that occurred between 2009 and 2017 with moment magnitudes ranging from 6.5 to 8.0. Synthetic seismograms for those events are computed in a 1-D reference model PREM, and amplitude ratios between observed and synthetic seismograms are calculated in the frequency domain by spectra division, with measurement windows determined based on visual inspection of seismograms. We simulate wave propagation in a global velocity model S40RTS based on SPECFEM3D and show that the average amplitude ratio as a function of epicentral distance is not sensitive to 3-D focusing and defocusing for the source–receiver configuration of the data set. This data set includes about 5500 S and SS measurements that are not affected by mantle transition zone triplications (multiple ray paths), and those measurements are applied in linear inversions to obtain a preliminary 1-D Q model QMSI. This model reveals a high Q region in the uppermost lower mantle. While model QMSI improves the overall datafit of the entire data set, it does not fully explain SS amplitudes at short epicentral distances or the amplitudes of the SSS and SSSS waves. Using forward modelling, we modify the 1-D model QMSI iteratively to reduce the overall amplitude misfit of the entire data set. The final Q model QMSF requires a stronger and thicker high Q region at depths between 600 and 900 km. This anelastic structure indicates possible viscosity layering in the mid mantle. 
    more » « less
  3. SUMMARY Tsunami generation by offshore earthquakes is a problem of scientific interest and practical relevance, and one that requires numerical modelling for data interpretation and hazard assessment. Most numerical models utilize two-step methods with one-way coupling between separate earthquake and tsunami models, based on approximations that might limit the applicability and accuracy of the resulting solution. In particular, standard methods focus exclusively on tsunami wave modelling, neglecting larger amplitude ocean acoustic and seismic waves that are superimposed on tsunami waves in the source region. In this study, we compare four earthquake-tsunami modelling methods. We identify dimensionless parameters to quantitatively approximate dominant wave modes in the earthquake-tsunami source region, highlighting how the method assumptions affect the results and discuss which methods are appropriate for various applications such as interpretation of data from offshore instruments in the source region. Most methods couple a 3-D solid earth model, which provides the seismic wavefield or at least the static elastic displacements, with a 2-D depth-averaged shallow water tsunami model. Assuming the ocean is incompressible and tsunami propagation is negligible over the earthquake duration leads to the instantaneous source method, which equates the static earthquake seafloor uplift with the initial tsunami sea surface height. For longer duration earthquakes, it is appropriate to follow the time-dependent source method, which uses time-dependent earthquake seafloor velocity as a forcing term in the tsunami mass balance. Neither method captures ocean acoustic or seismic waves, motivating more advanced methods that capture the full wavefield. The superposition method of Saito et al. solves the 3-D elastic and acoustic equations to model the seismic wavefield and response of a compressible ocean without gravity. Then, changes in sea surface height from the zero-gravity solution are used as a forcing term in a separate tsunami simulation, typically run with a shallow water solver. A superposition of the earthquake and tsunami solutions provides an approximation to the complete wavefield. This method is algorithmically a two-step method. The complete wavefield is captured in the fully coupled method, which utilizes a coupled solid Earth and compressible ocean model with gravity. The fully coupled method, recently incorporated into the 3-D open-source code SeisSol, simultaneously solves earthquake rupture, seismic waves and ocean response (including gravity). We show that the superposition method emerges as an approximation to the fully coupled method subject to often well-justified assumptions. Furthermore, using the fully coupled method, we examine how the source spectrum and ocean depth influence the expression of oceanic Rayleigh waves. Understanding the range of validity of each method, as well as its computational expense, facilitates the selection of modelling methods for the accurate assessment of earthquake and tsunami hazards and the interpretation of data from offshore instruments. 
    more » « less
  4. SUMMARY Seismic anisotropy has been detected at many depths of the Earth, including its upper layers, the lowermost mantle and the inner core. While upper mantle seismic anisotropy is relatively straightforward to resolve, lowermost mantle anisotropy has proven to be more complicated to measure. Due to their long, horizontal ray paths along the core–mantle boundary (CMB), S waves diffracted along the CMB (Sdiff) are potentially strongly influenced by lowermost mantle anisotropy. Sdiff waves can be recorded over a large epicentral distance range and thus sample the lowermost mantle everywhere around the globe. Sdiff therefore represents a promising phase for studying lowermost mantle anisotropy; however, previous studies have pointed out some difficulties with the interpretation of differential SHdiff–SVdiff traveltimes in terms of seismic anisotropy. Here, we provide a new, comprehensive assessment of the usability of Sdiff waves to infer lowermost mantle anisotropy. Using both axisymmetric and fully 3-D global wavefield simulations, we show that there are cases in which Sdiff can reliably detect and characterize deep mantle anisotropy when measuring traditional splitting parameters (as opposed to differential traveltimes). First, we analyze isotropic effects on Sdiff polarizations, including the influence of realistic velocity structure (such as 3-D velocity heterogeneity and ultra-low velocity zones), the character of the lowermost mantle velocity gradient, mantle attenuation structure, and Earth’s Coriolis force. Secondly, we evaluate effects of seismic anisotropy in both the upper and the lowermost mantle on SHdiff waves. In particular, we investigate how SHdiff waves are split by seismic anisotropy in the upper mantle near the source and how this anisotropic signature propagates to the receiver for a variety of lowermost mantle models. We demonstrate that, in particular and predictable cases, anisotropy leads to Sdiff splitting that can be clearly distinguished from other waveform effects. These results enable us to lay out a strategy for the analysis of Sdiff splitting due to anisotropy at the base of the mantle, which includes steps to help avoid potential pitfalls, with attention paid to the initial polarization of Sdiff and the influence of source-side anisotropy. We demonstrate our Sdiff splitting method using three earthquakes that occurred beneath the Celebes Sea, measured at many transportable array stations at a suitable epicentral distance. We resolve consistent and well-constrained Sdiff splitting parameters due to lowermost mantle anisotropy beneath the northeastern Pacific Ocean. 
    more » « less
  5. Varadhan, S.R.S. (Ed.)
    Full-waveform inversion (FWI) is today a standard process for the inverse problem of seismic imaging. PDE-constrained optimization is used to determine unknown parameters in a wave equation that represent geophysical properties. The objective function measures the misfit between the observed data and the calculated synthetic data, and it has traditionally been the least-squares norm. In a sequence of papers, we introduced the Wasserstein metric from optimal transport as an alternative misfit function for mitigating the so-called cycle skipping, which is the trapping of the optimization process in local minima. In this paper, we first give a sharper theorem regarding the convexity of the Wasserstein metric as the objective function. We then focus on two new issues. One is the necessary normalization of turning seismic signals into probability measures such that the theory of optimal transport applies. The other, which is beyond cycle skipping, is the inversion for parameters below reflecting interfaces. For the first, we propose a class of normalizations and prove several favorable properties for this class. For the latter, we demonstrate that FWI using optimal transport can recover geophysical properties from domains where no seismic waves travel through. We finally illustrate these properties by the realistic application of imaging salt inclusions, which has been a significant challenge in exploration geophysics. 
    more » « less