skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 26, 2026

Title: Tightly Synchronizing 360-degree Video Playback on a Fleet of VR Headsets
We present IMPS: Immersive Media Player System, a tightly synchronized 360º media player that leverages Android VR headsets to deliver immersive educational experiences. Designed for deployment in classrooms, IMPS allows instructors to manage synchronized playback for up to 50 headsets using a tablet interface. The system’s synchronization algorithm ensures lockstep playback across devices within 10 ms, addressing audio and video desynchronization issues of previous systems. IMPS has been successfully deployed by the Act One non-profit to deliver VR content to Title I schools in Arizona and is also used at Arizona State University for synchronized playback of 360º media in educational settings.  more » « less
Award ID(s):
1942844
PAR ID:
10580750
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400714030
Page Range / eLocation ID:
127 to 127
Format(s):
Medium: X
Location:
La Quinta CA USA
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate the rate-distortion (R-D) characteristics of full ultra-high definition (UHD) 360° videos and capture corresponding head movement navigation data of virtual reality (VR) headsets. We use the navigation data to analyze how users explore the 360° look-around panorama for such content and formulate related statistical models. The developed R-D characteristics and modeling capture the spatiotemporal encoding efficiency of the content at multiple scales and can be exploited to enable higher operational efficiency in key use cases. The high quality expectations for next generation immersive media necessitate the understanding of these intrinsic navigation and content characteristics of full UHD 360° videos. 
    more » « less
  2. In today’s world, augmented reality and virtual reality (AR/VR) technologies have become more accessible to the public than ever. This brings the possibility of immersive learning to the forefront of education for future generations. However, there is still much to discover and improve in using these technologies to analyze and understand learning. This paper explores the utilization of data captured through AR/VR headsets during an immersive training program for industrial robotics. This includes data on time spent, eye gaze, and hand movement during a range of activities to track a learner’s understanding of the content and intelligently estimate learner confidence within these environments using deep learning. Leveraging a dataset that comprises responses and confidence levels from 10 individuals across 35 questions, we aim to improve the uses and applicability of confidence estimation. We explore the possibility of training a model using learners’ data to dynamically fine-tune lessons and activities for each individual, thereby improving performance. We demonstrate that a pre-trained compact LSTM classification model can be fine-tuned with relatively small data, for enhanced performance on an individual basis for better personalized learning. 
    more » « less
  3. Badminton is a fast-paced sport that requires a strategic combination of spatial, temporal, and technical tactics. To gain a competitive edge at high-level competitions, badminton professionals frequently analyze match videos to gain insights and develop game strategies. However, the current process for analyzing matches is time-consuming and relies heavily on manual note-taking, due to the lack of automatic data collection and appropriate visualization tools. As a result, there is a gap in effectively analyzing matches and communicating insights among badminton coaches and players. This work proposes an end-to-end immersive match analysis pipeline designed in close collaboration with badminton professionals, including Olympic and national coaches and players. We present VIRD, a VR Bird (i.e., shuttle) immersive analysis tool, that supports interactive badminton game analysis in an immersive environment based on 3D reconstructed game views of the match video. We propose a top-down analytic workflow that allows users to seamlessly move from a high-level match overview to a detailed game view of individual rallies and shots, using situated 3D visualizations and video. We collect 3D spatial and dynamic shot data and player poses with computer vision models and visualize them in VR. Through immersive visualizations, coaches can interactively analyze situated spatial data (player positions, poses, and shot trajectories) with flexible viewpoints while navigating between shots and rallies effectively with embodied interaction. We evaluated the usefulness of VIRD with Olympic and national-level coaches and players in real matches. Results show that immersive analytics supports effective badminton match analysis with reduced context-switching costs and enhances spatial understanding with a high sense of presence. 
    more » « less
  4. null (Ed.)
    In this paper, we demonstrate the Information Interactions in Virtual Reality (IIVR) system designed and implemented to study how users interact with abstract information objects in immersive virtual environments in the context of information retrieval. Virtual reality displays are quickly growing as social and personal computing media, and understanding user interactions in these immersive environments is imperative. As a step towards effective information retrieval in such emerging platforms, our system is central to upcoming studies to observe how users engage in information triaging tasks in Virtual Reality (VR). In these studies, we will observe the effects of (1) information layouts and (2) types of interactions in VR. We believe this early system motivates researchers in understanding and designing meaningful interactions for future VR information retrieval applications. 
    more » « less
  5. Simulation can be employed as an interactive computer game to enable game-based learning. Educational simulations can also be combined with immersive technologies such as virtual reality (VR) to enhance student engagement and learning. While recent years have seen significant growth in the use of immersive technologies in education, the role and contribution of the additional immersion offered by VR still needs to be explored. This paper aims to address this gap by comparing low- and high-immersion modes for a simulation game to familiarize students with the fundamental concepts of mathematical optimization. The game resembles performing a heuristic search on the solution space for an optimization problem and involves finding the highest peak in an arctic landscape. Our research experiments include three groups of students who play the game either in VR, desktop mode, or PowerPoint slides. Our statistical comparisons show that VR enhanced students' sense of presence and learning. 
    more » « less