We present a combinatorial formula using skew Young tableaux for the coefficients of Kazhdan-Lusztig polynomials for sparse paving matroids. These matroids are known to be logarithmically almost all matroids, but are conjectured to be almost all matroids. We also show the positivity of these coefficients using our formula. In special cases, such as uniform matroids, our formula has a nice combinatorial interpretation.
more »
« less
This content will become publicly available on July 12, 2025
The Combinatorics Behind the Leading Kazhdan-Lusztig Coefficients of Braid Matroids
Ferroni and Larson gave a combinatorial interpretation of the braid Kazhdan-Lusztig polynomials in terms of series-parallel matroids. As a consequence, they confirmed an explicit formula for the leading Kazhdan-Lusztig coefficients of braid matroids with odd rank, as conjectured by Elias, Proudfoot, and Wakefield. Based on Ferroni and Larson’s work, we further explore the combinatorics behind the leading Kazhdan-Lusztig coefficients of braid matroids. The main results of this paper include an explicit formula for the leading Kazhdan-Lusztig coefficients of braid matroids with even rank, a simple expression for the number of simple series-parallel matroids of rank $k + 1$ on $2k$ elements, and explicit formulas for the leading coefficients of inverse Kazhdan-Lusztig polynomials of braid matroids. The binomial identity for the Abel polynomials plays an important role in the proofs of these formulas.
more »
« less
- PAR ID:
- 10580758
- Publisher / Repository:
- Electronic Journal of Combinatorics
- Date Published:
- Journal Name:
- The Electronic Journal of Combinatorics
- Volume:
- 31
- Issue:
- 3
- ISSN:
- 1077-8926
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the category whose objects are graphs of fixed genus and whose morphisms are contractions. We show that the corresponding contravariant module categories are Noetherian and we study two families of modules over these categories. The first takes a graph to a graded piece of the homology of its unordered configuration space and the second takes a graph to an intersection homology group whose dimension is given by a Kazhdan–Lusztig coefficient; in both cases we prove that the module is finitely generated. This allows us to draw conclusions about torsion in the homology groups of graph configuration spaces, and about the growth of Betti numbers of graph configuration spaces and Kazhdan–Lusztig coefficients of graphical matroids. We also explore the relationship between our category and outer space, which is used in the study of outer automorphisms of free groups.more » « less
-
Abstract We initiate a general approach to the relative braid group symmetries on (universal) quantum groups, arising from quantum symmetric pairs of arbitrary finite types, and their modules. Our approach is built on new intertwining properties of quasi ‐matrices which we develop and braid group symmetries on (Drinfeld double) quantum groups. Explicit formulas for these new symmetries on quantum groups are obtained. We establish a number of fundamental properties for these symmetries on quantum groups, strikingly parallel to their well‐known quantum group counterparts. We apply these symmetries to fully establish rank 1 factorizations of quasi ‐matrices, and this factorization property, in turn, helps to show that the new symmetries satisfy relative braid relations. As a consequence, conjectures of Kolb–Pellegrini and Dobson–Kolb are settled affirmatively. Finally, the above approach allows us to construct compatible relative braid group actions on modules over quantum groups for the first time.more » « less
-
Abstract We study a class of combinatorially defined polynomial ideals that are generated by minors of a generic symmetric matrix. Included within this class are the symmetric determinantal ideals, the symmetric ladder determinantal ideals, and the symmetric Schubert determinantal ideals of A. Fink, J. Rajchgot, and S. Sullivant. Each ideal in our class is a type C analog of a Kazhdan–Lusztig ideal of A. Woo and A. Yong; that is, it is the scheme‐theoretic defining ideal of the intersection of a type C Schubert variety with a type C opposite Schubert cell, appropriately coordinatized. The Kazhdan–Lusztig ideals that arise are exactly those where the opposite cell is 123‐avoiding. Our main results include Gröbner bases for these ideals, prime decompositions of their initial ideals (which are Stanley–Reisner ideals of subword complexes), and combinatorial formulas for their multigraded Hilbert series in terms of pipe dreams.more » « less
-
Generalized permutahedra are polytopes that arise in combinatorics, algebraic geometry, representation theory, topology, and optimization. They possess a rich combinatorial structure. Out of this structure we build a Hopf monoid in the category of species. Species provide a unifying framework for organizing families of combinatorial objects. Many species carry a Hopf monoid structure and are related to generalized permutahedra by means of morphisms of Hopf monoids. This includes the species of graphs, matroids, posets, set partitions, linear graphs, hypergraphs, simplicial complexes, and building sets, among others. We employ this algebraic structure to define and study polynomial invariants of the various combinatorial structures. We pay special attention to the antipode of each Hopf monoid. This map is central to the structure of a Hopf monoid, and it interacts well with its characters and polynomial invariants. It also carries information on the values of the invariants on negative integers. For our Hopf monoid of generalized permutahedra, we show that the antipode maps each polytope to the alternating sum of its faces. This fact has numerous combinatorial consequences. We highlight some main applications: We obtain uniform proofs of numerous old and new results about the Hopf algebraic and combinatorial structures of these families. In particular, we give optimal formulas for the antipode of graphs, posets, matroids, hypergraphs, and building sets. They are optimal in the sense that they provide explicit descriptions for the integers entering in the expansion of the antipode, after all coefficients have been collected and all cancellations have been taken into account. We show that reciprocity theorems of Stanley and Billera–Jia–Reiner (BJR) on chromatic polynomials of graphs, order polynomials of posets, and BJR-polynomials of matroids are instances of one such result for generalized permutahedra. We explain why the formulas for the multiplicative and compositional inverses of power series are governed by the face structure of permutahedra and associahedra, respectively, providing an answer to a question of Loday. We answer a question of Humpert and Martin on certain invariants of graphs and another of Rota on a certain class of submodular functions. We hope our work serves as a quick introduction to the theory of Hopf monoids in species, particularly to the reader interested in combinatorial applications. It may be supplemented with Marcelo Aguiar and Swapneel Mahajan’s 2010 and 2013 works, which provide longer accounts with a more algebraic focus.more » « less