skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gröbner bases, symmetric matrices, and type C Kazhdan–Lusztig varieties
Abstract We study a class of combinatorially defined polynomial ideals that are generated by minors of a generic symmetric matrix. Included within this class are the symmetric determinantal ideals, the symmetric ladder determinantal ideals, and the symmetric Schubert determinantal ideals of A. Fink, J. Rajchgot, and S. Sullivant. Each ideal in our class is a type C analog of a Kazhdan–Lusztig ideal of A. Woo and A. Yong; that is, it is the scheme‐theoretic defining ideal of the intersection of a type C Schubert variety with a type C opposite Schubert cell, appropriately coordinatized. The Kazhdan–Lusztig ideals that arise are exactly those where the opposite cell is 123‐avoiding. Our main results include Gröbner bases for these ideals, prime decompositions of their initial ideals (which are Stanley–Reisner ideals of subword complexes), and combinatorial formulas for their multigraded Hilbert series in terms of pipe dreams.  more » « less
Award ID(s):
1855598
PAR ID:
10494811
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Journal of the London Mathematical Society
Date Published:
Journal Name:
Journal of the London Mathematical Society
Volume:
109
Issue:
2
ISSN:
0024-6107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We prove that double Schubert polynomials have the saturated Newton polytope property. This settles a conjecture by Monical, Tokcan and Yong. Our ideas are motivated by the theory of multidegrees. We introduce a notion of standardization of ideals that enables us to study nonstandard multigradings. This allows us to show that the support of the multidegree polynomial of each Cohen–Macaulay prime ideal in a nonstandard multigrading, and in particular, that of each Schubert determinantal ideal is a discrete polymatroid. 
    more » « less
  2. Abstract The affine matrix-ball construction (abbreviated AMBC) was developed by Chmutov, Lewis, Pylyavskyy, and Yudovina as an affine generalization of the Robinson–Schensted correspondence. We show that AMBC gives a simple way to compute a distinguished involution in each Kazhdan–Lusztig cell of an affine symmetric group. We then use AMBC to give the 1st known canonical presentation for the asymptotic Hecke algebras of extended affine symmetric groups. As an application, we show that AMBC gives a conceptual way to compute the Lusztig–Vogan bijection. For the latter, we build upon prior works of Achar and Rush. 
    more » « less
  3. Abstract We study when blowup algebras are ‐split or strongly ‐regular. Our main focus is on algebras given by symbolic and ordinary powers of ideals of minors of a generic matrix, a symmetric matrix, and a Hankel matrix. We also study ideals of Pfaffians of a skew‐symmetric matrix. We use these results to obtain bounds on the degrees of the defining equations for these algebras. We also prove that the limit of the normalized regularity of the symbolic powers of these ideals exists and that their depth stabilizes. Finally, we show that, for determinantal ideals, there exists a monomial order for which taking initial ideals commutes with taking symbolic powers. To obtain these results, we develop the notion of ‐split filtrations and symbolic ‐split ideals. 
    more » « less
  4. We prove a sharp lower bound on the number of terms in an element of the reduced Gröbner basis of a Schubert determinantal ideal I w I_w under the term order of Knutson–Miller [Ann. of Math. (2) 161 (2005), pp. 1245–1318]. We give three applications. First, we give a pattern-avoidance characterization of the matrix Schubert varieties whose defining ideals are binomial. This complements a result of Escobar–Mészáros [Proc. Amer. Math. Soc. 144 (2016), pp. 5081–5096] on matrix Schubert varieties that are toric with respect to their natural torus action. Second, we give a combinatorial proof that the recent formulas of Rajchgot–Robichaux–Weigandt [J. Algebra 617 (2023), pp. 160–191] and Almousa–Dochtermann–Smith [Preprint, arXiv:2209.09851, 2022] computing the Castelnuovo–Mumford regularity of vexillary I w I_w and toric edge ideals of bipartite graphs respectively agree for binomial I w I_w . Third, we demonstrate that the Gröbner basis for I w I_w given by the minimal generators of Gao–Yong [J. Commut. Algebra 16 (2024), pp. 267–273] is reduced if and only if the defining permutation w w is vexillary. 
    more » « less
  5. We define a type B analogue of the category of finite sets with surjections, and we study the representation theory of this category. We show that the opposite category is quasi-Gröbner, which implies that submodules of finitely generated modules are again finitely generated. We prove that the generating functions of finitely generated modules have certain prescribed poles, and we obtain restrictions on the representations of type B Coxeter groups that can appear in such modules. Our main example is a module that categorifies the degree i Kazhdan–Lusztig coefficients of type B Coxeter arrangements. 
    more » « less