skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 3, 2026

Title: From communication to action: using ordered network analysis to model team performance in clinical simulation
Background Effective team communication is crucial for managing medical emergencies like malignant hyperthermia (MH), but current assessment methods fail to capture the dynamic and temporal nature of teamwork processes. The lack of reliable measures to inform feedback to teams is likely limiting the overall effectiveness of simulation training. This study demonstrates the application of ordered network analysis (ONA) to model communication sequences during the simulated MH scenario. Methods Twenty-two anesthesiologists participated in video-recorded MH simulations. Each scenario involved one participant as the primary anesthesiologist with confederates in supporting roles. Team communication was coded using the Team Reflection Behavioral Observation (TuRBO) framework, capturing behaviors related to information gathering, evaluation, planning, and implementation. ONA modeled the sequences of these coded behaviors as dynamic networks. Teams were classified as high- or low-performing based on timely dantrolene administration and appropriate MH treatment actions. Network visualizations and statistical tests compared communication patterns between groups. Results Five of 22 teams (23%) were high-performing. ONA revealed high-performers transitioned more effectively from situation assessment (information seeking/evaluation) to planning and implementation, while low-performers cycled between assessment behaviors without progressing (p = 0.04, Cohen’s d = 1.72). High-performers demonstrated stronger associations between invited input, explicitly assessing the situation, stating plans, and implementation. Conclusions Integrating video coding with ONA provides an innovative approach for examining team behaviors. Leveraging ONA can uncover patterns in communication timing and sequences, guiding targeted interventions to improve team coordination in various real-world clinical and simulated settings (e.g., operating room, EMS, ICU).  more » « less
Award ID(s):
2202451
PAR ID:
10580782
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
BMC medical education
ISSN:
1472-6920
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Workplace research suggests that roughly equal communication between teammates is positively associated with team effectiveness. A distinction between teams in these studies and distributed action teams is the degree of role specialization and context-driven communication which may entail unequal degrees of communication. Yet, distributed action teams may have more equal footing to provide inputs in contexts such as mission planning or briefings. Twenty-two ad hoc teams participated in a simulated ground combat vehicle task in which teams conducted six-missions and briefed before each mission. We used team performance, team situation awareness, team workload, and team resilience as team effectiveness criteria. Balanced degrees of communication in mission briefs were correlated with performance and resilience measures, and largely uncorrelated with situation-awareness and workload measures. The overall amount of communication was also largely uncorrelated with all effectiveness measures. The results suggest that communication balance in mission briefs may help predict effectiveness in action teams. 
    more » « less
  2. ObjectiveThis study examines low-, medium-, and high-performing Human-Autonomy Teams’ (HATs’) communication strategies during various technological failures that impact routine communication strategies to adapt to the task environment. BackgroundTeams must adapt their communication strategies during dynamic tasks, where more successful teams make more substantial adaptations. Adaptations in communication strategies may explain how successful HATs overcome technological failures. Further, technological failures of variable severity may alter communication strategies of HATs at different performance levels in their attempts to overcome each failure. MethodHATs in a Remotely Piloted Aircraft System-Synthetic Task Environment (RPAS-STE), involving three team members, were tasked with photographing targets. Each triad had two randomly assigned participants in navigator and photographer roles, teaming with an experimenter who simulated an AI pilot in a Wizard of Oz paradigm. Teams encountered two different technological failures, automation and autonomy, where autonomy failures were more challenging to overcome. ResultsHigh-performing HATs calibrated their communication strategy to the complexity of the different failures better than medium- and low-performing teams. Further, HATs adjusted their communication strategies over time. Finally, only the most severe failures required teams to increase the efficiency of their communication. ConclusionHAT effectiveness under degraded conditions depends on the type of communication strategies enacted by the team. Previous findings from studies of all-human teams apply here; however, novel results suggest information requests are particularly important to HAT success during failures. ApplicationUnderstanding the communication strategies of HATs under degraded conditions can inform training protocols to help HATs overcome failures. 
    more » « less
  3. ObjectiveWe explore the relationships between objective communication patterns displayed during virtual team meetings and established, qualitative measures of team member effectiveness. BackgroundA key component of teamwork is communication. Automated measures of objective communication patterns are becoming more feasible and offer the ability to measure and monitor communication in a scalable, consistent and continuous manner. However, their validity in reflecting meaningful measures of teamwork processes are not well established, especially in real-world settings. MethodWe studied real-world virtual student teams working on semester-long projects. We captured virtual team meetings using the Zoom video conferencing platform throughout the semester and periodic surveys comprising peer ratings of team member effectiveness. Leveraging audio transcripts, we examined relationships between objective measures of speaking time, silence gap duration and vocal turn-taking and peer ratings of team member effectiveness. ResultsSpeaking time, speaking turn count, degree centrality and (marginally) speaking turn duration, but not silence gap duration, were positively related to individual-level team member effectiveness. Time in dyadic interactions and interaction count, but not interaction length, were positively related to dyad-level team member effectiveness. ConclusionOur study highlights the relevance of objective measures of speaking time and vocal turn-taking to team member effectiveness in virtual project-based teams, supporting the validity of these objective measures and their use in future research. ApplicationOur approach offers a scalable, easy-to-use method for measuring communication patterns and team member effectiveness in virtual teams and opens the opportunity to study these patterns in a more continuous and dynamic manner. 
    more » « less
  4. Abstract BackgroundEffectively facilitating teamwork experiences, particularly in the context of large-size courses, is difficult to implement. This study seeks to address the challenges of implementing effective teamwork experiences in large courses. This study integrated teamwork pedagogy to facilitate a semester-long project in the context of a large-size class comprising 118 students organized into 26 teams. The data for this study were collected from two online teamwork sessions when teams collaborated and self-recorded during the in-class time. The video recordings were qualitatively analyzed to identify patterns in team dynamics processes through visualizations. The study aims to provide insights into the different ways team members engaged in team dynamics processes during different phases of the semester. ResultsFindings suggest that members of teams were mostly active and passive during meetings and less constructive and interactive in their engagement. Team members mainly engaged in communication, team orientation, and feedback behaviors. Over time, team members' interactions with one another remained about the same, with feedback behaviors tending to diminish and coordination behaviors staying about the same or slightly increasing over time. ConclusionThe implications of this study extend to both practice and theory. Practically, combining cooperative learning and scrum practices enabled a blend of collaborative and cooperative work, which suggests providing teams with tools and structures to coordinate teamwork processes and promote interaction among team members. From a theoretical perspective, this study contributes to the understanding of temporal aspects of teamwork dynamics by examining how team interactions evolve during working sessions at different points in time. Overall, this research provides valuable insights for educators, practitioners, and researchers aiming to enhance teamwork experiences in large courses, particularly in software development disciplines. 
    more » « less
  5. Self-regulation is crucial for student success in scientific inquiry and engineering design. However, it remains unclear how students dynamically engage in self-regulated learning (SRL) processes to achieve high performance. In this study, we investigated the temporal nature of self-regulation during engineering design by leveraging computer trace data from 101 high school students who designed an energy-plus house in a simulated learning environment. Using sequential mining, we found that high-performing students were more engaged in the Observation, Analysis, and Evaluation phases of SRL than low-performing students. Additionally, high-performing students demonstrated consecutive sequential patterns between Observation and Analysis, Reformation and Evaluation, and Analysis and Evaluation behaviors. These findings provide insights into students’ SRL processes and the design of scaffoldings. 
    more » « less