skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Web invariants for flamingo Specht modules
Webs yield an especially important realization of certain Specht modules, irreducible representations of symmetric groups, as they provide a pictorial basis with a convenient diagrammatic calculus. In recent work, the last three authors associated polynomials to noncrossing partitions without singleton blocks, so that the corresponding polynomials form a web basis of the pennant Specht module S(d,d,1n−2d). These polynomials were interpreted as global sections of a line bundle on a 2-step partial flag variety. Here, we both simplify and extend this construction. On the one hand, we show that these polynomials can alternatively be situated in the homogeneous coordinate ring of a Grassmannian, instead of a 2-step partial flag variety, and can be realized as tensor invariants of classical (but highly nonplanar) tensor diagrams. On the other hand, we extend these ideas from the pennant Specht module S(d,d,1n−2d) to more general flamingo Specht modules S(dr,1n−rd). In the hook case r=1, we obtain a spanning set that can be restricted to a basis in various ways. In the case r>2, we obtain a basis of a well-behaved subspace of S(dr,1n−rd), but not of the entire module.  more » « less
Award ID(s):
2247089
PAR ID:
10580795
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Algebraic Combinatorics
Date Published:
Journal Name:
Algebraic Combinatorics
Volume:
8
Issue:
1
ISSN:
2589-5486
Page Range / eLocation ID:
235 to 266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Determinant maximization problem gives a general framework that models problems arising in as diverse fields as statistics [Puk06], convex geometry [Kha96], fair allocations [AGSS16], combinatorics [AGV18], spectral graph theory [NST19a], network design, and random processes [KT12]. In an instance of a determinant maximization problem, we are given a collection of vectors U = {v1, . . . , vn} ⊂ Rd , and a goal is to pick a subset S ⊆ U of given vectors to maximize the determinant of the matrix ∑i∈S vivi^T. Often, the set S of picked vectors must satisfy additional combinatorial constraints such as cardinality constraint (|S| ≤ k) or matroid constraint (S is a basis of a matroid defined on the vectors). In this paper, we give a polynomial-time deterministic algorithm that returns a r O(r)-approximation for any matroid of rank r ≤ d. This improves previous results that give e O(r^2)-approximation algorithms relying on e^O(r)-approximate estimation algorithms [NS16, AG17,AGV18, MNST20] for any r ≤ d. All previous results use convex relaxations and their relationship to stable polynomials and strongly log-concave polynomials. In contrast, our algorithm builds on combinatorial algorithms for matroid intersection, which iteratively improve any solution by finding an alternating negative cycle in the exchange graph defined by the matroids. While the det(.) function is not linear, we show that taking appropriate linear approximations at each iteration suffice to give the improved approximation algorithm. 
    more » « less
  2. Given a matrix A ∈ ℝn\texttimes{}d and a vector b ∈ ℝn, we consider the regression problem with ℓ∞ guarantees: finding a vector x′ ∈ ℝd such that $$||x'-x^* ||_infty leq frac{epsilon}{sqrt{d}}cdot ||Ax^*-b||_2cdot ||A^dagger||$$, where x* = arg minx∈Rd ||Ax – b||2. One popular approach for solving such ℓ2 regression problem is via sketching: picking a structured random matrix S ∈ ℝm\texttimes{}n with m < n and S A can be quickly computed, solve the "sketched" regression problem arg minx∈ℝd ||S Ax – Sb||2. In this paper, we show that in order to obtain such ℓ∞ guarantee for ℓ2 regression, one has to use sketching matrices that are dense. To the best of our knowledge, this is the first user case in which dense sketching matrices are necessary. On the algorithmic side, we prove that there exists a distribution of dense sketching matrices with m = ε-2d log3(n/δ) such that solving the sketched regression problem gives the ℓ∞ guarantee, with probability at least 1 – δ. Moreover, the matrix S A can be computed in time O(nd log n). Our row count is nearly-optimal up to logarithmic factors, and significantly improves the result in (Price et al., 2017), in which a superlinear in d rows, m = Ω(ε-2d1+γ) for γ ∈ (0, 1) is required. Moreover, we develop a novel analytical framework for ℓ∞ guarantee regression that utilizes the Oblivious Coordinate-wise Embedding (OCE) property introduced in (Song \& Yu, 2021). Our analysis is much simpler and more general than that of (Price et al., 2017). Leveraging this framework, we extend the ℓ∞ guarantee regression result to dense sketching matrices for computing the fast tensor product of vectors. 
    more » « less
  3. null (Ed.)
    Abstract We investigate the long-standing problem of finding a combinatorial rule for the Schubert structure constants in the $$K$$-theory of flag varieties (in type $$A$$). The Grothendieck polynomials of A. Lascoux–M.-P. Schützenberger (1982) serve as polynomial representatives for $$K$$-theoretic Schubert classes; however no positive rule for their multiplication is known in general. We contribute a new basis for polynomials (in $$n$$ variables) which we call glide polynomials, and give a positive combinatorial formula for the expansion of a Grothendieck polynomial in this basis. We then provide a positive combinatorial Littlewood–Richardson rule for expanding a product of Grothendieck polynomials in the glide basis. Our techniques easily extend to the $$\beta$$-Grothendieck polynomials of S. Fomin–A. Kirillov (1994), representing classes in connective $$K$$-theory, and we state our results in this more general context. 
    more » « less
  4. null (Ed.)
    We present approximation and exact algorithms for piecewise regression of univariate and bivariate data using fixed-degree polynomials. Specifically, given a set S of n data points (x1, y1), . . . , (xn, yn) ∈ Rd × R where d ∈ {1, 2}, the goal is to segment xi’s into some (arbitrary) number of disjoint pieces P1, . . . , Pk, where each piece Pj is associated with a fixed-degree polynomial fj : Rd → R, to minimize the total loss function λk+􏰄ni=1(yi −f(xi))2, where λ ≥ 0 is a regularization term that penalizes model complexity (number of pieces) and f : 􏰇kj=1 Pj → R is the piecewise polynomial function defined as f|Pj = fj. The pieces P1,...,Pk are disjoint intervals of R in the case of univariate data and disjoint axis-aligned rectangles in the case of bivariate data. Our error approximation allows use of any fixed-degree polynomial, not just linear functions. Our main results are the following. For univariate data, we present a (1 + ε)-approximation algorithm with time complexity O(nε log1ε), assuming that data is presented in sorted order of xi’s. For bivariate data, we √ present three results: a sub-exponential exact algorithm with running time nO( n); a polynomial-time constant- approximation algorithm; and a quasi-polynomial time approximation scheme (QPTAS). The bivariate case is believed to be NP-hard in the folklore but we could not find a published record in the literature, so in this paper we also present a hardness proof for completeness. 
    more » « less
  5. We give efficient algorithms for finding power-sum decomposition of an input polynomial with component s. The case of linear s is equivalent to the well-studied tensor decomposition problem while the quadratic case occurs naturally in studying identifiability of non-spherical Gaussian mixtures from low-order moments. Unlike tensor decomposition, both the unique identifiability and algorithms for this problem are not well-understood. For the simplest setting of quadratic s and , prior work of [GHK15] yields an algorithm only when . On the other hand, the more general recent result of [GKS20] builds an algebraic approach to handle any components but only when is large enough (while yielding no bounds for or even ) and only handles an inverse exponential noise. Our results obtain a substantial quantitative improvement on both the prior works above even in the base case of and quadratic s. Specifically, our algorithm succeeds in decomposing a sum of generic quadratic s for and more generally the th power-sum of generic degree- polynomials for any . Our algorithm relies only on basic numerical linear algebraic primitives, is exact (i.e., obtain arbitrarily tiny error up to numerical precision), and handles an inverse polynomial noise when the s have random Gaussian coefficients. 
    more » « less