skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polynomial-Time Power-Sum Decomposition of Polynomials
We give efficient algorithms for finding power-sum decomposition of an input polynomial with component s. The case of linear s is equivalent to the well-studied tensor decomposition problem while the quadratic case occurs naturally in studying identifiability of non-spherical Gaussian mixtures from low-order moments. Unlike tensor decomposition, both the unique identifiability and algorithms for this problem are not well-understood. For the simplest setting of quadratic s and , prior work of [GHK15] yields an algorithm only when . On the other hand, the more general recent result of [GKS20] builds an algebraic approach to handle any components but only when is large enough (while yielding no bounds for or even ) and only handles an inverse exponential noise. Our results obtain a substantial quantitative improvement on both the prior works above even in the base case of and quadratic s. Specifically, our algorithm succeeds in decomposing a sum of generic quadratic s for and more generally the th power-sum of generic degree- polynomials for any . Our algorithm relies only on basic numerical linear algebraic primitives, is exact (i.e., obtain arbitrarily tiny error up to numerical precision), and handles an inverse polynomial noise when the s have random Gaussian coefficients.  more » « less
Award ID(s):
2047933
PAR ID:
10407348
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)
Page Range / eLocation ID:
956 to 967
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We give new and efficient black-box reconstruction algorithms for some classes of depth-3 arithmetic circuits. As a consequence, we obtain the first efficient algorithm for computing the tensor rank and for finding the optimal tensor decomposition as a sum of rank-one tensors when then input is a constant-rank tensor. More specifically, we provide efficient learning algorithms that run in randomized polynomial time over general fields and in deterministic polynomial time over and for the following classes: 1) Set-multilinear depth-3 circuits of constant top fan-in ((k) circuits). As a consequence of our algorithm, we obtain the first polynomial time algorithm for tensor rank computation and optimal tensor decomposition of constant-rank tensors. This result holds for d dimensional tensors for any d, but is interesting even for d=3. 2) Sums of powers of constantly many linear forms ((k) circuits). As a consequence we obtain the first polynomial-time algorithm for tensor rank computation and optimal tensor decomposition of constant-rank symmetric tensors. 3) Multilinear depth-3 circuits of constant top fan-in (multilinear (k) circuits). Our algorithm works over all fields of characteristic 0 or large enough characteristic. Prior to our work the only efficient algorithms known were over polynomially-sized finite fields (see. Karnin-Shpilka 09’). Prior to our work, the only polynomial-time or even subexponential-time algorithms known (deterministic or randomized) for subclasses of (k) circuits that also work over large/infinite fields were for the setting when the top fan-in k is at most 2 (see Sinha 16’ and Sinha 20’). 
    more » « less
  2. Abstract Linear structural equation models relate the components of a random vector using linear interdependencies and Gaussian noise. Each such model can be naturally associated with a mixed graph whose vertices correspond to the components of the random vector. The graph contains directed edges that represent the linear relationships between components, and bidirected edges that encode unobserved confounding. We study the problem of generic identifiability, that is, whether a generic choice of linear and confounding effects can be uniquely recovered from the joint covariance matrix of the observed random vector. An existing combinatorial criterion for establishing generic identifiability is the half-trek criterion (HTC), which uses the existence of trek systems in the mixed graph to iteratively discover generically invertible linear equation systems in polynomial time. By focusing on edges one at a time, we establish new sufficient and new necessary conditions for generic identifiability of edge effects extending those of the HTC. In particular, we show how edge coefficients can be recovered as quotients of subdeterminants of the covariance matrix, which constitutes a determinantal generalization of formulas obtained when using instrumental variables for identification. While our results do not completely close the gap between existing sufficient and necessary conditions we find, empirically, that our results allow us to prove the generic identifiability of many more mixed graphs than the prior state-of-the-art. 
    more » « less
  3. null (Ed.)
    We give the first polynomial-time algorithm for robust regression in the list-decodable setting where an adversary can corrupt a greater than 1/2 fraction of examples. For any our algorithm takes as input a sample of n linear equations where (1- \alpha) n of the equations are {\em arbitrarily} chosen. It outputs a list that contains a linear function that is close to the truth. Our algorithm succeeds whenever the inliers are chosen from a \emph{certifiably} anti-concentrated distribution D. In particular, this gives an efficient algorithm to find an optimal size list when the inlier distribution is standard Gaussian. For discrete product distributions that are anti-concentrated only in \emph{regular} directions, we give an algorithm that achieves similar guarantee under the promise that the true linear function has all coordinates of the same magnitude. To complement our result, we prove that the anti-concentration assumption on the inliers is information-theoretically necessary. Our algorithm is based on a new framework for list-decodable learning that strengthens the `identifiability to algorithms' paradigm based on the sum-of-squares method. 
    more » « less
  4. In numerical linear algebra, a well-established practice is to choose a norm that exploits the structure of the problem at hand to optimise accuracy or computational complexity. In numerical polynomial algebra, a single norm (attributed to Weyl) dominates the literature. This article initiates the use of L_p norms. This classical idea yields strong improvements in the analysis of the number of steps performed by numerous iterative algorithms. In particular, we exhibit three algorithms where, despite the complexity of computing L_{infinity } norm the use L_p norms substantially reduces computational complexity: a subdivision-based algorithm in real algebraic geometry for computing the homology of semialgebraic sets, a well-known meshing algorithm in computational geometry and the computation of zeros of systems of complex quadratic polynomials (a particular case of Smale’s 17th problem). 
    more » « less
  5. The CP tensor decomposition is used in applications such as machine learning and signal processing to discover latent low-rank structure in multidimensional data. Computing a CP decomposition via an alternating least squares (ALS) method reduces the problem to several linear least squares problems. The standard way to solve these linear least squares subproblems is to use the normal equations, which inherit special tensor structure that can be exploited for computational efficiency. However, the normal equations are sensitive to numerical ill-conditioning, which can compromise the results of the decomposition. In this paper, we develop versions of the CP-ALS algorithm using the QR decomposition and the singular value decomposition, which are more numerically stable than the normal equations, to solve the linear least squares problems. Our algorithms utilize the tensor structure of the CP-ALS subproblems efficiently, have the same complexity as the standard CP-ALS algorithm when the input is dense and the rank is small, and are shown via examples to produce more stable results when ill-conditioning is present. Our MATLAB implementation achieves the same running time as the standard algorithm for small ranks, and we show that the new methods can obtain lower approximation error. 
    more » « less