Medical palpation is a vital diagnostic technique where practitioners assess a patient’s condition through tactile examination. Advancements in remote health technologies should emphasize supporting tactile/haptic modalities to enable some aspects of physical examination to be conducted at a distance. In thyroid examinations, differentiating nodule sizes is critical for identifying malignant lumps. This study investigates how palpation motion affects the sensing performance of single-point normal force sensors in detecting thyroid nodules. Using a phantom skin model with lumps of varied sizes and depths, force data was captured and visualized as a stiffness distribution (tactile imaging). The captured lump shapes were compared to actual shapes using Correlation Coefficient (CC), Mean Squared Error (MSE), and Structural Similarity Index (SSIM) methods. Results showed that single-point normal force sensors effectively detect lumps, particularly during typical palpation motions such as Poke and Push & Pull, with Poke consistently yielding superior performance across various sizes and depths. However, estimating lump shapes becomes increasingly challenging as lump depth increases, regardless of the motion applied. These findings emphasize the importance of motion in optimizing singlepoint sensors for palpation and provide valuable insights for developing sensorized gloves for clinical use, particularly in remote healthcare systems.
more »
« less
This content will become publicly available on April 1, 2026
Characterization of Medical Neck Palpation to Inform Design of Haptic Palpation Sensors
Medical palpation is a task that traditionally requires a skilled practitioner to assess and diagnose a patient through direct touch and manipulation of their body. In regions with a shortage of such professionals, robotic hands or sensorized gloves could potentially capture the necessary haptic information during palpation exams and relay it to medical doctors for diagnosis. From an engineering perspective, a comprehensive understanding of the relevant motions and forces is essential for designing haptic technologies capable of fully capturing this information. This study focuses on thyroid examination palpation, aiming to analyze the hand motions and forces applied to the patient’s skin during the procedure. We identified key palpation techniques through video recordings and interviews and measured the force characteristics during palpation performed by both non-medical participants and medical professionals. Our findings revealed five primary palpation hand motions and characterized the multi-dimensional interaction forces involved in these motions. These insights provide critical design guidelines for developing haptic sensing and display technologies optimized for remote thyroid nodule palpation and diagnosis.
more »
« less
- PAR ID:
- 10580831
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 25
- Issue:
- 7
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 2159
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Active, exploratory touch supports human perception of a broad set of invisible physical surface properties. When traditionally hands-on tasks, such as medical palpation of soft tissue, are translated to virtual settings, haptic perception is throttled by technological limitations, and much of the richness of active exploration can be lost. The current research seeks to restore some of this richness with advanced methods of passively conveying haptic data alongside synchronized visual feeds. A robotic platform presented haptic stimulation modeled after the relative motion between a hypothetical physician's hands and artificial tissue samples during palpation. Performance in discriminating the sizes of hidden “tumors” in these samples was compared across display conditions which included haptic feedback and either: 1) synchronized video of the participant's hand, recorded during active exploration; 2) synchronized video of another person's hand; 3) no accompanying video. The addition of visual feedback did not improve task performance, which was similar whether receiving relative motion recorded from one's own hand or someone else's. While future research should explore additional strategies to improve task performance, this initial attempt to translate active haptic sensations to passive presentations indicates that visuo-haptic feedback can induce reliable haptic perceptions of motion in a stationary passive hand.more » « less
-
Haptic feedback can provide operators of hand- held robots with active guidance during challenging tasks and with critical information on environment interactions. Yet for such haptic feedback to be effective, it must be lightweight, capable of integration into a hand-held form factor, and capable of displaying easily discernible cues. We present the design and evaluation of HaPPArray — a haptic pneumatic pouch array — where the pneumatic pouches can be actuated alone or in sequence to provide information to the user. A 3x3 array of pouches was integrated into a handle, representative of an interface for a hand-held robot. When actuated individually, users were able to correctly identify the pouch being actuated with 86% accuracy, and when actuated in sequence, users were able to correctly identify the associated direction cue with 89% accuracy. These results, along with a demonstration of how the direction cues can be used for haptic guidance of a medical robot, suggest that HaPPArray can be an effective approach for providing haptic feedback for hand-held robots.more » « less
-
Abstract Physical human–robot interactions (pHRI) often provide mechanical force and power to aid walking without requiring voluntary effort from the human. Alternatively, principles of physical human–human interactions (pHHI) can inspire pHRI that aids walking by engaging human sensorimotor processes. We hypothesize that low-force pHHI can intuitively induce a person to alter their walking through haptic communication. In our experiment, an expert partner dancer influenced novice participants to alter step frequency solely through hand interactions. Without prior instruction, training, or knowledge of the expert’s goal, novices decreased step frequency 29% and increased step frequency 18% based on low forces (< 20 N) at the hand. Power transfer at the hands was 3–700 × smaller than what is necessary to propel locomotion, suggesting that hand interactions did not mechanically constrain the novice’s gait. Instead, the sign/direction of hand forces and power may communicate information about how to alter walking. Finally, the expert modulated her arm effective dynamics to match that of each novice, suggesting a bidirectional haptic communication strategy for pHRI that adapts to the human. Our results provide a framework for developing pHRI at the hand that may be applicable to assistive technology and physical rehabilitation, human-robot manufacturing, physical education, and recreation.more » « less
-
Recent developments in AI have provided assisting tools to support pathologists’ diagnoses. However, it remains challenging to incorporate such tools into pathologists’ practice; one main concern is AI’s insufficient workflow integration with medical decisions. We observed pathologists’ examination and discovered that the main hindering factor to integrate AI is its incompatibility with pathologists’ workflow. To bridge the gap between pathologists and AI, we developed a human-AI collaborative diagnosis tool — xPath — that shares a similar examination process to that of pathologists, which can improve AI’s integration into their routine examination. The viability of xPath is confirmed by a technical evaluation and work sessions with twelve medical professionals in pathology. This work identifies and addresses the challenge of incorporating AI models into pathology, which can offer first-hand knowledge about how HCI researchers can work with medical professionals side-by-side to bring technological advances to medical tasks towards practical applications.more » « less
An official website of the United States government
